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Abstract
There have been long and bitter debates between thosewho advocate for the use of residualized change as the
foundation of longitudinal models versus those who utilize difference scores. However, these debates have
focused primarily on modeling change in the outcome variable. Here, we extend these same ideas to the
covariate side of the change equation, finding similar issues arisewhen using lagged versus difference scores
as covariates of interest in models of change. We derive a system of relationships that emerge across models
differing in how time-varying covariates are represented, and then demonstrate how the set of logical trans-
formations emerges in applied longitudinal settings. We conclude by considering the practical implications
of a synthesized understanding of the effects of difference scores as both outcomes and predictors, with spe-
cific consequences for mediation analysis within multivariate longitudinal models. Our results suggest that
there is reason for cautionwhen using difference scores as time-varying covariates, given their propensity for
inducing apparent inferential inversions within different analyses.AQ2

¶
AQ3

¶

Translational Abstract
There have been long and bitter debates between those who advocate for the use of residualized change
(regressing a variable on itself measured at some time lag prior) as the foundation of longitudinal models
versus thosewho utilize difference scores (subtracting prior from current status). However, most of the meth-
odological work on this topic has focused on the outcome variable in different models. Here, we extend these
same issues to the covariates—or predictors—in longitudinal models of change and find that similar issues
arise when using lagged versus difference score predictors. We show how apparently distinct models using
different versions of time-varying covariates are, in fact, simply repackaged versions of the same predictive
information and are related through a set of equations that we lay out. We then work through several applied
examples across traditional and multilevel regression models. We conclude by considering the issues that
arise where a time-varying variable acts as both outcome and predictor—with a specific focus on mediation
analysis within multivariate longitudinal models. Our results suggest that users should exercise caution
when using change scores as time-varying covariates—not because they are wrong per se, but because
they can introduce apparent inferential inversions that can mislead researchers when drawing substantive
conclusions.

Emilio Ferrer served as action editor.
Ethan M. McCormick https://orcid.org/0000-0002-7919-4340
EthanM.McCormickwas supportedwith funds from theNWO (Nederlandse

Organisatie voor Wetenschappelijk Onderzoek) Domain Social Sciences and
Humanities (SSH) and Jacobs Foundation Fellowship Program (2023-1510-
00). The authors thank the authors who provided access to the empirical data
for demonstration purposes. The authors have no conflicts of interest to disclose.
Data used in the preparation of this article were partially obtained from the
Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy
.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal
study designed to recruit more than 10,000 children aged 9–10 years and follow
them over 10 years into early adulthood. The ABCD Study® is supported by the
National Institutes of Health (NIH) and additional federal partners under Awards
U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA
051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106,
U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA
051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038,

U01DA041148, U01DA041093, U01DA041089, U24DA041123, and U24
DA041147. A full list of supporters is available at https://abcdstudy.org/
federal-partners.html. A listing of participating sites and a complete listing of
the study investigators can be found at https://abcdstudy.org/consortium
members/. ABCD consortium investigators designed and implemented the
study and/or provided data but did not necessarily participate in the analysis or
writing of this report. This article reflects the views of the authors and may
not reflect the opinions or views of the NIH or ABCD consortium investigators.
The code required to reproduce all analyses, as well as more- extensive deriva-
tions, can be found at https://osf.io/yc96v/ or in the associated online supplemen-
tal materials.

The data are available at https://doi.org/10.17605/OSF.IO/YC96V.
The experimental materials are available at https://doi.org/10.17605/OSF

.IO/YC96V.
Correspondence concerning this article should be addressed to Ethan

M. McCormick, Methodology and Statistics Department, Institute of
Psychology, Leiden University, 2333 AK Leiden, The Netherlands. Email:
e.m.mccormick@fsw.leidenuniv.nl

Psychological Methods
© 2024 American Psychological Association
ISSN: 1082-989X https://doi.org/10.1037/met0000663

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

https://orcid.org/0000-0002-7919-4340
https://orcid.org/0000-0002-7919-4340
https://orcid.org/0000-0002-7919-4340
https://abcdstudy.org
https://abcdstudy.org
https://abcdstudy.org
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/federal-partners.html
https://abcdstudy.org/consortium_members/
https://abcdstudy.org/consortium_members/
https://abcdstudy.org/consortium_members/
https://abcdstudy.org/consortium_members/
https://osf.io/yc96v/
https://osf.io/yc96v/
https://osf.io/yc96v/
https://doi.org/10.1037/met0000663.supp
https://doi.org/10.1037/met0000663.supp
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
https://doi.org/10.17605/OSF.IO/YC96V
mailto:e.m.mccormick@fsw.leidenuniv.nl
mailto:e.m.mccormick@fsw.leidenuniv.nl
mailto:e.m.mccormick@fsw.leidenuniv.nl
mailto:e.m.mccormick@fsw.leidenuniv.nl
mailto:e.m.mccormick@fsw.leidenuniv.nl
https://doi.org/10.1037/met0000663
https://doi.org/10.1037/met0000663
https://doi.org/10.1037/met0000663


Keywords: time-varying covariates, raw score change, residualized change, multilevel modeling, mediation,
latent change score model

Supplemental materials: https://doi.org/10.1037/met0000663.supp

One of the central goals of the psychological and behavioral sci-
ences is to understand how processes unfold over time—within indi-
viduals, dyads, organizations, countries, or other units of interest.1

Longitudinal data not only allows researchers to chart the course
of change, but also to prospectively predict later outcomes using pre-
dictors observed at earlier time points (Curran & Hancock, 2021;
Curran et al., 2010; McCormick et al., 2023; McNeish & Matta,
2020). Identifying these prospective relations is often of key interest
to researchers, both in the context of panel data analysis (e.g., does
physical activity predict stroke symptom recovery, Kollen et al.,
2005) and when considering intensive longitudinal data (e.g., does
positive affect early in the day predict drinking behavior later in
the day?, Howard et al., 2015). The best way to model such effects,
however, remains unclear. Indeed, time-varying covariates (TVCs)
are often incorporated into longitudinal models with exclusively
contemporaneous effects, where the value of the TVC at a given
time point influences the value of the outcome at that same time
point. While contemporaneous effects can be informative, they do
not support inferences about prospective prediction.
In an effort to preserve temporal precedence, researchers have thus

considered several alternative ways of embedding prospective
effects of TVCs within their models. For a given TVC xt, one com-
mon approach is to include the lag(1) version of the covariate (e.g.,
xt−1, McNeish & Matta, 2020), where the goal is to assess the effect
of prior covariate status on the current value of the outcome. Another
strategy is to use a change score for the TVC (Δx= xt− xt−1) as a
predictor (e.g., Grimm et al., 2012). With this approach, the idea
is to see how the magnitude of change in the TVC between the
prior and current time point predicts the outcome at the current
time point. For both of these approaches, researchers might choose
to control for the contemporaneous relationship between the TVC
and outcome to isolate the prospective effects above-and-beyond
concurrent associations. Still, a third option is to include the prior
(rather than the contemporaneous) observation of the TVC with
the change score (i.e., xt−1 with Δx) in an effort to control for the
starting point when evaluating the effect of change. While the deci-
sion between these alternatives may seem to be a simple matter of
addressing the specific research hypothesis at hand, there are some
hidden relationships between these models that can lead to very dif-
ferent substantive interpretations depending on the option chosen. In
this treatment, we outline these relationships and the complications
they bring about, which harken back to long-standing debates on
the relative merits of using residualized and raw change scores.
While these debates historically focused on the definition of change
in an outcome variable (Castro-Schilo & Grimm, 2018; Cronbach &
Furby, 1970; Willett, 1997), here we show that many of the same
principles also apply on the predictor side of the equation. At
times, the choice of how to represent prospective effects within
the model can even result in apparent inversions of effects.
Although these principles can be illustrated through straightforward
transformations, they do not appear to be widely known in the
applied research community. Thus, our purpose is to bring greater
clarity to the choice of models for capturing prospective effects of

TVCs and to illustrate this within a variety of common longitudinal
modeling approaches.

Time-Varying Covariates (TICs)

We can begin by drawing a conceptual and statistical distinction
between time-invariant and TVCs. TICs are predictors whose values
remain constant over time, either representing unchanging character-
istics of the person or variables that were only measured once, typ-
ically at the outset of the longitudinal study (e.g., baseline measures).
In contrast, TVCs are repeatedly measured predictors which can take
on different values from one point to the next. Variation on the TVC
over time is thought to be predictive of variation in the outcome over
time.

In modeling TVCs, it is often important to distinguish within-
person variability versus between-person variability (Curran &
Bauer, 2011). For example, in predicting heart rate from exercise,
one would expect to observe both a between-person relationship—
those who exercise more on average have lower average heart
rates—as well as a within-person relationship—a person’s heart
rate increases at times when they are exercising. How within-person
versus between-person effects of TVCs are distinguished differs
between modeling frameworks (McCormick et al., 2023; McNeish
& Matta, 2018, 2020), but the goals are similar across techniques.
There have been many treatments of how to properly include
TVCs in models of change over time (Curran & Bauer, 2011;
Gottfredson, 2019; Hoffman & Stawski, 2009; McCormick, 2021;
McNeish &Matta, 2020;Wang&Maxwell, 2015), and how this dif-
fers from multivariate growth modeling (see Curran & Hancock,
2021; McCormick et al., 2023), so we do not expand on these topics
here. Our concern, instead, is with modeling prospective effects of
TVCs.

For TICs, the modeling of prospective effects is relatively straight-
forward and primarily is facilitated through study design. If the TIC
was measured in advance of the repeated measures, then the effect is
considered to be a prospective one. Even if the TIC was measured
contemporaneously with the first observation of the outcome, effects
of the TIC on aspects of subsequent change in the repeated measures
are typically still interpreted as prospective. For TVCs, by contrast,
prospective prediction is made more challenging by the fact that
TVCs are usually collected at the same time points as the repeated
measures of the outcome. How best to tease out concurrent associa-
tions versus prospective effects when both predictors and outcomes
are measured contemporaneously and repeatedly remains uncertain.

Residualized and Raw Change

A long-standing debate in longitudinal modeling concerns the
use of residualized versus raw change scores, with sometimes

1 For our purposes here, we will assume the units of analysis are individ-
uals, although all the conclusions we draw generalize to these other kinds
of units.
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acrimonious exchanges stretching back over decades (Cronbach &
Furby, 1970; Lord, 1956; Willett, 1997). At issue is the best way to
measure change. An intuitively appealing measure of change is the
simple difference score, or raw change score, defined as Δyt,t−1=
yt− yt−1. Detractors of difference scores, however, have argued that
they are inherently unreliable, combining uncertainty in the measure-
ment of both yt and yt−1 (Cronbach & Furby, 1970). Moreover, one
must assume invariance of measurement for y, as any recalibration
of responses across time (e.g., sensitization towhat is beingmeasured)
would be conflated with true change (Bereiter, 1963). An alternative
is residualized change, in which change is measured via the residual
of a regression equation, (i.e., yt − ŷt), where ŷt is the predicted
value obtained from regressing current status (yt) on prior status
(yt−1). In this approach, change is redefined to be the difference
between current status and predicted current status based on prior
status. Residualized change too has been critiqued, with the chief
argument against it being that the relative rather than absolute
change captured by this approach lacks intuitive interpretations
(Willett, 1997). Many myths associated with the debate between
raw and residualized change have since been debunked. For
instance, Rogosa and Willett (1983, 1985) demonstrated that
under many realistic conditions, the difference score has a higher
reliability than anticipated by earlier research. Additionally, the dif-
ference score forms the basis for many models for assessing longi-
tudinal change over time, including paired-samples t tests, repeated
measures analysis of variance, and growth models (Rogosa &
Willett, 1985).
Mathematically, it can also be shown that the difference score is a

special case of the residualized change model in which the slope
(autoregressive [AR] effect of yt on yt−1) is set to 1. We can see
this below (see Castro-Schilo & Grimm, 2018, for a more thorough
treatment), beginning with the regression equation:

yt = b0 + b1yt−1 + 1t (1)

can be rearranged so that:

yt − b1yt−1 = b0 + 1t , (2)

when β1= 1, we have:

yt − 1∗yt−1
( ) = yt − yt−1 = Dyt,t−1 = b0 + 1t. (3)

which is the difference score model.2 One can argue the conse-
quences of this observation either way—the difference scores is
just a constrained residualized change score so the distinction is
not as stark as it first appears, or that the constraint of β1= 1 is a (typ-
ically) untested assumption of raw score change that one should not
necessarily expect to comport with the observed data. While these
relationships have not resolved debates surrounding the use of resi-
dualized and difference change scores—especially in the context of
whether or not to control for baseline status in the assessment of
experimental effects—they have demystified the superficially incon-
gruent forms the different models take.
Note that the debate outlined above centered on residualized ver-

sus change scores as outcomes in longitudinal models, whereas the
TVC is a repeatedly measured predictor. Nevertheless, we show that
many of the same considerations encountered on the y-side also
emerge on the x-side of the equation, where choice of residualized
versus raw change can induce seemingly discordant results in

prospective predictions. Below we outline the general analytic rela-
tionships which underlie these differences, and then demonstrate the
implications for real-data in the context of standard multiple regres-
sion and multilevel models (MLMs). Finally, we will combine what
we learn here about using change scores as predictors with prior
work on change scores as outcomes to better understand how
these parameter transformations influence mediation analysis within
the latent change score (LCS) modeling framework.

Equivalencies Between TVC Models

We can consider three scenarios for including lagged TVC rela-
tionships in models of change. Here we draw out the analytic rela-
tionships that exist between these three scenarios, independent of
the specific model that is being estimated. In our subsequent empir-
ical demonstrations, we will highlight how the following derivations
emerge specifically in different modeling frameworks. Our three
putative scenarios are as follows. Consider some outcome yt, mea-
sured at time t, that is, a perfect linear combination of any two of
the following: a TVC measured at the same time point (xt), the
TVC at the prior time point (xt−1), and the raw-score change in
the TVC between the prior and current time point (Δxt,t−1). Three
possible arrangements exist. First, we could include both contempo-
raneous and lag(1) effects of xt:

yt = a∗xt + b∗xt−1, (4)

where a and b represent the weights of the predictors within the lin-
ear combination. Second, we could include the contemporaneous
and change effects:

yt = c∗xt + d∗Dxt,t−1, (5)

where c and d are again weights. Third, we could include the lag(1)
and change effect:

yt = e∗xt−1 + f∗Dxt,t−1, (6)

where e and f are the weights.
Knowing that Δx= xt− xt−1, we can rewrite Equations 5 and 6 in

the following forms:

yt = c∗xt + d∗(xt − xt−1),

yt = e∗xt−1 + f ∗(xt − xt−1).
(7)

Finally, we can re-arrange like terms to give the following additive
expressions:

yt = (c+ d)∗xt + (−d)∗xt−1,

yt = f ∗xt + (e− f )∗xt−1.
(8)

This algebraic reformulation illustrates three things. First, despite
the fact that the three different linear combinations reflect different
theoretical conceptualizations of how to capture prospective effects,
they are all mathematically equivalent in the sense that the weights
for one linear combination can be expressed as a direct function of

2 This formulation of the difference score manifests directly in the latent
change score model framework (e.g., Grimm et al., 2012; McArdle &
Nesselroade, 1994) where the AR path between observations is set to 1 to
define the latent difference factor (Δηt,t−1).
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the weights of any another (here demonstrated in the form of
Equation 4). Specifically, the weights (a–f ) can be related as fol-
lows:

a = c+ d = f ,

b = −d = e− f .
(9)

Thus, any model that expresses an outcome as a linear combination
of two of the three representations of the TVC—xt, xt−1, and Δxt,t−1—

will be equivalent to any other. This algebra also reveals why adding
all three representations of the TVC simultaneously would be ill-
advised. Given their redundancies, it would be impossible to obtain
unique weights for all three forms at once. Finally, it is apparent
that this equivalence breaks down if any of the linear combinations
is restricted to only one representation of the TVC. For instance, a lin-
ear combination consisting solely of the change predictor (Δxt,t−1)
would be equivalent to Equation 4 only if the a and b weights were
equal in magnitude but opposite in sign. Such circumstances seem
highly implausible, suggesting that change scores for TVCs should
never be the sole representation of the TVC.
By contrast, there are contexts where researchers might have sound

theoretical reasons to include only the contemporaneous (xi,t) or only
the lagged (xi,t−1) effects of the TVC. For example, lagged paths
might decay to zero between measurements separated by long peri-
ods of time, or on the other extreme, sampling in time-series anal-
ysis (e.g., physiological recording) might exceed biological
constraints to transmit contemporaneous effects, leaving only
lagged relationships. In these cases, researchers might include
only one of the forms of the TVC to match the theoretical charac-
teristics of the data, which would still allow those TVCs to be inter-
preted in isolation. However, in the psychological and behavioral
sciences, repeated measures data have often fallen between these
two extremes, and the inclusion of contemporaneous and lagged
relationships is common in both panel and intensive longitudinal
settings (e.g., Arizmendi et al., 2021; Asparouhov et al., 2018;
Curran & Hancock, 2021; Epskamp et al., 2018; Grimm et al.,
2012; McCormick et al., 2023; McNeish & Matta, 2020).
Therefore, omission of these pathways should be chosen with
care to avoid bias arising from misspecification.

TVCs in the General Linear Model

We can first demonstrate the relevant parameter transformations
within the multiple regression framework. Here we can write out
the model expressions of y as linear combinations of different
forms of the TVC, mimicking Equations 4–6 but with the addition
of a regression intercept and person-specific residuals. The first, cor-
responding to Equation 4, models the contemporaneous and lagged
effect of xi,t:

yi,t = b0 + b1xi,t + b2xi,t−1 + 1i,t , (10)

the second, corresponding to Equation 5, includes the contempora-
neous and change effect:

yi,t = b0 + b3xi,t + b4Dxi + 1i,t , (11)

and the third, corresponding to Equation 6, includes the lagged and
change effect:

yi,t = b0 + b5xi,t−1 + b6Dxi + 1i,t . (12)

The expectation of y in these equations is as follows:

E[yi,t] = E[b0 + b1xi,t + b2xi,t−1]

= E[b0 + b3xi,t + b4Dxi]

= E[b0 + b5xi,t−1 + b6Dxi].

(13)

The algebraic relationships explored in the prior section show that

b1xi,t + b2xi,t−1 = b3xi,t + b4Dxi = b5xi,t−1 + b6Dxi. (14)

Given these equalities, β0 obtains the same value in all three
expressions. Furthermore, similar to the weights first derived, we
can re-express and re-arrange the regression coefficients in the
same fashion (see Equations 7 and 8) to give the following relation-
ships:

b1 = b3 + b4 = b5,

b2 = −b4 = b5 − b6.
(15)

While we have framed these transformations in terms of multiple
regression, this model subsumes many special cases of the general
linear model such as analysis of covariance, and the same system
of relationships would emerge in generalized linear models with lin-
ear prediction components (e.g., logits in logistic regression). These
parameter relations hold even when we alter ancillary parts of the
model, such as when expanding the model to also include TICs or
control variables, such as the AR effect of y (yi,t−1). In effect, as
long as the linear combinations from above remain unaltered within
the regression models, their equivalence will continue to hold. We
turn to an empirical demonstration to illustrate the relevant points.

Empirical Example (Gray Matter and Cognitive
Performance)

To facilitate our example, we drew two-wave data from the
Adolescent Brain and Cognition Development (ABCD Study,
Casey et al., 2018), including a measure of cognitive performance
(verbal intellect and language, Luciana et al., 2018) and cortical sur-
face area from the prefrontal cortex (for a description of the relevant
measures in this sample, see Michel et al., 2023). Here, we will use
the cognitive measure as the outcome (yt) and cortical surface area as
the time-varying predictor (xt).

3 We can fit three versions of the
model corresponding to Equation 13, which are displayed in
Table 1 (Models 1–3). Lined up side-by-side, the equivalencies
jump off the page, where both the estimates and standard errors
behave as expected. For instance, the effect of xt−1 in Model 1
(B= 1.612, SE= 0.338) shows the b=−d relationship with the
effect of Δxi in Model 2 (B=−1.612, SE= 0.338). Less obviously,
we can see that the effect of xt−1 from Model 1 (B= 1.612, SE=
0.338) is the same as the effect of xt−1 (B= 2.124, SE= 0.101)
minus the effect of Δxt,t−1 (B= 0.513, SE= 0.335) from Model 3
(i.e., b= e− f ).

In these initial models, we did not include any additional predic-
tors in the model, however, we could do so towithout influencing the
equivalencies across models. To demonstrate this, we ran the same
set of models but controlling for a TIC, the age at the first age of
assessment (Table 1; Models 4–6). Although the values of the

3 Code to replicate all analyses is available here: https://osf.io/yc96v/.
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coefficients are different between the two sets of models (1–3 vs.
4–6), the relationships between the coefficients remain identical
(from Equation 15). The same holds for models where we include
an AR effect of the outcome yi,t−1 as a predictor (see Section 1.2
in the online supplemental materials code).
Thus far we have demonstrated the equivalencies between TVC

forms without considering the implications for interpretation and
inference in these various models. We can return to Models 1–3 to
center our discussion. First, let us consider the contemporaneous
effect of xt on yt. In Model 1, which includes the lagged effect, the
contemporaneous effect is small and nonsignificant. By contrast,
in Model 2, which includes the change score rather than the lagged
effect, the contemporaneous effect is larger and statistically signifi-
cant. That is, in Model 1, we would conclude there is no within-time
effect of the covariate on the outcome, whereas inModel 2, wewould
conclude that such an effect exists. Second, consider Model 3, for
which the lagged effect is equal to the contemporaneous effect in
Model 2, and the change score effect is equal to the contemporaneous
effect fromModel 1. Yet a researcher fitting Model 3 would interpret
these effects very differently than if they had fit either Model 1
or 2. Third, and perhaps even more confounding, the lagged effect
in Model 1 is equal in magnitude but opposite to the change score
effect in Model 2, despite both effects being intended to convey pro-
spective prediction while controlling for the contemporaneous value
of the TVC. The effect inModel 1 implies that thosewith higher prior
levels of cortical surface area show higher levels of cognitive perfor-
mance a year later, while the latter suggests that those who show
increases in surface area will show lower cognitive performance, in
each case while controlling for concurrent associations between cor-
tical surface area and cognitive performance. When phrased care-
fully, we can see that these are distinct questions, although the
results provide an ambiguous picture of how surface area is prospec-
tively linked to cognitive performance, and unsuspecting substantive
researchers could easily draw opposing conclusions from the two sets
of results. We will return to recommendations for how to avoid these
misinterpretations in a later section.
One might speculate that this inversion reflects a strong negative

relationship between prior status and the magnitude of change, as we
might expect if there were strong floor or ceiling effects of change in
the TVC. Boundary effects would limit those already high or low
at the prior timepoint from further change toward those boundaries.
In our sample data, however, the initial levels of prefrontal cortical sur-
face area are only weakly negatively correlated with the magnitude of
change (r=−0.125). Instead, the mathematical relationship between

the two models reveals why this counter-intuitive sign inversion
occurs—namely, when controlling for xt, the effect of Δxt,t−1 will
always be equal inmagnitude but opposite in sign from xt−1, regardless
of the correlation between xt and Δxt,t−1. As such, this is, a property of
how the Δxt,t−1 score is computed, rather than the characteristics of a
given data set (e.g., boundary effects on the outcome or predictor).

One final point to highlight is something mentioned at the end
of the first derivations of the weights, which is the result of only
including the change predictor in the model. We mentioned that
this would be equivalent to including both xi,t and xi,t−1 in the
model but constraining their parameter values to be equal in magni-
tude, but opposite in sign.We demonstrate this result in the empirical
data, comparing the results of the regression model, where Δxi is the
only predictor with a structural equation modeling approach to the
regression analysis, which allows us to include xi,t and xi,t−1 but
apply the relevant model constraint during estimation (see the online
supplemental materials code for full model results).4 Table 2 con-
tains the relevant parameter estimates, which confirm this effect.
Given how unlikely this constraint is to conform to reality in most
substantive applications, we reiterate that using Δxi alone as a predic-
tor seems inadvisable.

TVCs in the MLM

Another framework within which TVCs are commonly modeled
is the MLM. Although here we will focus on the multilevel instanti-
ation of these TVC models (see Curran & Bauer, 2011 for an over-
view), similar results could be obtained within the latent curve
modeling (LCM) framework. Within the MLM, we can model the
effect of the TVC across repeated observations, either pooling the
effects across time or uniquely estimating each time-specific effect.
The pooling approach is standard in the MLM (which we will see
below), while the time-specific approach is the default in the
LCM, although constraining the effects to be equal is a common sim-
plification in LCMs (for more in-depth explication of the differ-
ences, see McNeish & Matta, 2020).

The three forms of theMLMwith the different TVCoptions resem-
ble the models we saw in the regression context, but are now extended
to include random effects (u terms). We can see the first model with

Table 1
Equivalent TVC Models in the General Linear Model

Predictor

TVC only TVC+ TIC

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

xt 0.513 (0.335) 2.124*** (0.101) 0.853* (0.331) 2.108*** (0.099)
xt−1 1.612*** (0.338) 2.124*** (0.101) 1.256*** (0.334) 2.108*** (0.099)
Δxt,t−1 −1.612*** (0.338) 0.513 (0.335) −1.256*** (0.334) 0.853* (0.331)
TIC 0.185*** (0.013) 0.185*** (0.013) 0.185*** (0.013)
R2 0.057 0.057 0.057 0.083 0.083 0.083

Note. R2 is the proportion variance explained; the intercept and time-specific residual variance are omitted for brevity, but were equal in value across the three
models. TVC = time-varying covariate; TIC = time-invariant covariate.AQ4

¶ * p, .05. ** p, .01. *** p, .001.

4 Note that constraints could alternatively be implemented within a multi-
level regression model if desired, however, this feature is not universally
available in all software. We use a structural equation model approach here
for convenience.
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the contemporaneous and lagged effect of the TVC below:

yti = g00 + g10xti + g20xt−1,i︸�������������︷︷�������������︸
fixed effects

+ u0i + u1ixti + u2ixt−1,i︸������������︷︷������������︸
random effects

+rti, (16)

where the repeated measure (yti) is modeled as a function of the fixed
(or average) linear effect of the contemporaneous and lagged predic-
tors, as well as individual deviations from that fixed effect (i.e., the
random effect). While here we show both the random intercept (u0i)
and the random slopes (u1i and u2i) for completeness, we need not
model all of these effects at once. Indeed, we will start with models
that only include a random intercept and build up to models with ran-
dom slopes as we work through our example analyses. As we will
show, the equivalencies between parameter estimates across models
will hold regardless of whether random slopes are included, as they
are all linear expressions of equivalent form. The other two models
include the version with the contemporaneous and change effect:

yti = g00 + g30xti + g40Dxi + u0i + u3ixti + u4iDxi + rti, (17)

and the version with the lagged and change effect

yti = g00 + g50xt−1,i + g60Dxi + u0i + u5ixt−1,i + u6iDxi + rti.

(18)

The MLM expectation resembles the regression model we have
seen before Equation 13 but with g’s to represent the fixed effects:

E [yti] = g00 + g10xti + g20xt−1,i

= g00 + g30xti + g40Dxi
= g00 + g50xt−1,i + g60Dxi.

(19)

We could also include additional time-varying or time-invariant pre-
dictors into the model, but we will leave these aside here for simplic-
ity. Given the similarity in the form of this expectation to the one for
the standard regression model Equation 13, we can expect that the
fixed effects will behave along the same principles we have seen
so far. Namely,

g10 = g30 + g40 = g50,

g20 = −g40 = g50 − g60.
(20)

However, one potentially complicating feature we want to con-
sider is the inclusion of random effects of the various TVCs. That
is, can we expect that the equivalencies in the fixed effects across
models hold when we allow individual variation to exist around
these effects? For this assessment, a− f are now treated as random
variables, and we must use the quadratic form for computing the

variances of a linear combination of random variables to establish
the relationships between their variances.

The variance relationships for the first set of equivalencies are out-
lined below:

Var(a) = Var(c)+ 2 Cov(c, d)+ Var(d) = Var(f ), (21)

and for the second set, a similar approach yields the following equa-
tions:

Var(b) = Var(d) = Var(e)− 2 Cov(e, f )+ Var(f ). (22)

Note that the quadratic form prevents negative variance values
despite the inverse b=−d relationship, or subtraction of point esti-
mates in b= e− f. For an alternative matrix-based approach to
obtaining the full covariance matrix transformations simultaneously,
interested readers can refer to the Appendix. We can turn to our
empirical data examples below to highlight these various transfor-
mations in practice.

Empirical Examples

To demonstrate the ubiquity of these model equivalencies, and
their robustness to different model specifications, we highlight two
empirical examples. In the first example (detailed more fully by
Wright & Simms, 2016), 94 participants recorded their daily positive
and negative affect across� 100 days (Mdn= 92.5; range= 59–
101 days). Building on this data, Arizmendi et al. (2021) drew his-
torical weather data from the National Weather Service and linked
it with the window of observation, and so included daily temperature
recordings in addition to the affect data. Here, we tested the link
between daily average temperature and individuals’ self-reported
negative affect. This is an attractive example since weather is a
purely exogenous TVC, where we do not need to be concerned
about reciprocal links from the outcome of interest over time (with
the plausible assumption that none of our participants govern the
current or future weather via their emotional state). Our second
data example draws on ecological momentary assessment data of
emotional experiences during the COVID-19 pandemic (Fried
et al., 2022), where 79 subjects were pinged across 14 days
(Mdnobs= 53; range= 12–56 observations) during March of 2020
(the initial lockdown period in the Netherlands). Here, we modeled
the effect of feelings of loneliness (“I felt like I lack companionship,
or that I am not close to people”) on feelings of anhedonia
(“I couldn’t seem to experience any positive feeling at all”) over
the two-week period. While the assumption of exogeneity is weaker
than in the weather data, we nevertheless included loneliness as a
TVC to reflect common practice. Our goal in doing so was to illus-
trate the same TVC equivalencies as before, without concern for
causal attributions. The code, data, and full output associated with
these analyses are available in the online supplemental material
code (https://osf.io/yc96v/).

Fixed Slopes Model (Weather and Negative Affect)

With theweather and negative affect data, we fit MLMswith a ran-
dom intercept and fixed effect of the various TVCs, represented in
each possible combination. To adjust the scale of the variables, we
standardized both measures before fitting the models. As antici-
pated, the addition of the random intercept did not influence the pat-
tern of effects seen in the various TVC models, as given in Table 3.

Table 2
Prediction With Only the TVC Change Score

Predictor
Regression on

TVC change score
Equivalent constrained

TVC lag modela

Δxt,t−1 −0.362 (0.342)
xt −0.362 (0.342)
xt−1 0.362 (0.342)
−2ℓ 52,863.7 52,863.7

Note. TVC= time-varying covariate; SEM = structural equation modeling.
a SEM coefficients are constrained to be equal in magnitude but opposite in
sign; −2ℓ is the −2 log-likelihood.
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Indeed here we see the same pattern of both equivalencies and
changes in significance that we saw in the multiple regression mod-
els, as given in Table 1. Additionally, we would make different sub-
stantive conclusions about the effect of same-day temperature (xi,t)
depending on which other form of the TVC we include in the
model (nonsignificant in Model 1 but significant and negative in
Model 2; Table 1). This straightforward extension of the single-level
regression analysis conforms perfectly to expectations and high-
lights the need to be concerned about these apparent inversions
within a multilevel modeling context.

Random Slopes (Loneliness and Depression During
COVID)

For the loneliness and anhedonia data, we fit the same three mod-
els—with a random intercept and exclusively fixed effects for the
TVCs—and a second triplet of models that also included random
effects for each of the TVCs. As we have seen throughout, the
same equivalencies derived initially hold for the fixed effects even
in the relatively complex random-effects multilevel model.
Additionally, the equivalency rules that we outlined above for the
random effects hold in these models (Table 4; Models 4–6).
Namely, that the variance estimates of the contemporaneous effect
in Model 4 and the change effect in Model 6 are equal, as are the

variance estimates for the lagged effect in Model 4 and change effect
in Model 5. The variance estimates for the contemporaneous effect
in Model 5 and the lagged effect in Model 6 follow the expressions
in Equations 21 and 22 exactly. The correlation among random
effects differs across models (following the relationships we outline
in Equation A1), with an especially high correlation between the ran-
dom effect of xi,t−1 and Δxi in Model 6. Note that the correlation
between the random effects of xi,t and Δxi has the opposite sign of
the other two correlations (see Equation A2 for details).

Here, if our substantive question relates to how changes in loneliness
relate to levels of depression during the lockdown period, we would
make opposite theoretical conclusions about the direction of effect,
depending on whether we controlled for contemporaneous levels of
loneliness (Models 2 and 5) where there is a negative effect of Δxi,
or prior levels (Models 3 and 6) where there is a strong positive effect,
as given in Table 4. To stress, neither effect is wrong, but reconciling
the apparent discrepancy across models requires a more nuanced
understanding of what the effect of Δximeans conditioned on the pres-
ence of the other form of the TVC in themodel.Without such a careful
understanding, applied research may interpret these as contradictory,
leading to confusion in the literature. As such, itmay be a useful default
approach to avoid usingΔxi as a TVC unless there are strong theoretical
reasons for its inclusion (we will discuss this more thoroughly in the
Recommendations for Applied Research section).

Table 3
Equivalent TVC Models in the Multilevel Model With Fixed Effects

Predictor Model 1 Model 2 Model 3

xi,t 0.013 (0.009) −0.014*** (0.004)
xi,t−1 −0.027** (0.009) −0.014*** (0.004)
Δxi 0.027** (0.009) 0.013 (0.009)
R2 marginal 0.117 0.117 0.117
R2 conditional 0.504 0.504 0.504

Note. R2 is the proportion variance explained (Nakagawa et al., 2017); the intercept and time-specific
residual variance are omitted for brevity, but were equal in value across the three models. All
regressioncoefficients presented are standardized due to the rescaling of the data prior to fitting the
model. TVC = time-varying covariate.AQ5

¶ * p, .05. ** p, .01. *** p, .001.

Table 4
Equivalent TVC Models in the Multilevel Model With Fixed and Random Effects

Predictor Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Fixed effects
xi,t 0.343*** (0.017) 0.392*** (0.019) 0.393*** (0.043) 0.466*** (0.055)
xi,t−1 0.049** (0.017) 0.392*** (0.019) 0.073** (0.023) 0.466*** (0.055)
Δxi −0.049** (0.017) 0.343*** (0.017) −0.073** (0.023) 0.393*** (0.043)

Random effect variances
xi,t 0.086 0.141
xi,t−1 0.010 0.141
Δxi 0.010 0.086

Random effect correlations
xi,t with xi,t−1 0.740
xi,t with Dxi −0.850
xi,t−1 with Dxi 0.983

R2 marginal 0.205 0.205 0.205 0.226 0.226 0.226
R2 conditional 0.369 0.369 0.369 0.538 0.538 0.538

Note. R2 is the proportion variance explained (Nakagawa et al., 2017); the intercept and time-specific residual variance are omitted for brevity, but were equal
in value across the three models. TVC = time-varying covariate.AQ6

¶ * p, .05. ** p, .01. *** p, .001.
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Combining Predictors and Outcomes—Mediation With
Difference Scores

To complement the extensive literature on residualized change
versus difference scores on the outcome, our focus has been on
how similar challenges emerge when using lagged and change var-
iables as predictors. However, there are cases where a variable might
plausibly play both roles as part of a larger path or graph model. We
have seen hints of this in the literature on LCSs (Grimm et al., 2013;
McArdle, 2009), where the AR parameter in a latent AR model is
equivalent to the proportional parameter in a dual change score
model minus 1 (see Castro-Schilo & Grimm, 2018, Equation 5 for
a regression expression that highlights this point). In the traditional
specification of the LCSmodel, latent difference factors (Δη) are
treated only as outcomes (see Grimm et al., 2012, Figure 4 for an
example), where the relevant issues have been well-articulated and
addressed in prior research. However, when we use a difference
score (latent or otherwise) as a mediator (Goldsmith et al., 2018;
O’Laughlin et al., 2018; Selig & Preacher, 2009; Valente et al.,
2021; Valente & MacKinnon, 2017)—that is, as both an outcome
and a predictor simultaneously—we need to take care to recognize
the equivalent relationships noted above and how theymay influence
interpretations and inferences. In the following sections, we give a
brief overview of the LCS model, and then outline how the issues
we raised in the univariate linear model (e.g., generalized linear
model and mixed linear model) generalize to multivariate methods
which involve contemporaneous, lagged, and change variables as
predictors.

Time-Varying Measures in the LCS Model

For symmetry with prior sections, we will lay out the expecta-
tions for parameter estimates associated with the time-varying
predictions within the LCS model. However, to fully appreciate
how the model equivalencies play out, we will first sketch out
the general model specification of the LCS model with two time
points for simplicity. While there are many ways to parameterize
a LCS, several of which involve specifying latent “phantom” var-
iables for each repeated measure (e.g., Grimm et al., 2012), we will
retain the simplest version as all of the repeated measures we will
deal with here are observed (Kievit et al., 2018), and we are not
embedding the latent difference within a larger path or growth
model.
With respect to model equivalencies, we will begin by restating

prior work (Castro-Schilo & Grimm, 2018) that addresses how
parameter estimates will change when the target outcome is the con-
temporaneous variable (i.e., residualized change model) versus the
change score (i.e., difference score model). We can first start with
the residualized change model for the variable xi,t, which takes the
following form within the LCS model5:

xi,t = uARxi,t−1 + 1i,t. (23)

Here, θAR is the autoregressive effect of xi,t−1 on xi,t—we will use θ
as our general way to refer to regression parameters in these models
to distinguish them from other models. To convert this equation into
the difference score model, we subtract xi,t−1 from both sides of
Equation 23 and simplify to produce

Dxi = (uAR − 1)xi,t−1 + 1i,t . (24)

Note that while Equation 24 is expressed in terms of the observed
Δxi, these expressions apply equally to the latent difference, as
shown in Figure 1. We can see by the expression in Equation 24
that when the lagged TVC xi,t−1 predicts the change score (Δxi),
which in the LCS framework is typically referred to as the propor-
tional parameter and denoted as β, this parameter equals the corre-
sponding AR effect −1.

Next, we outline the equivalencies we have become familiar with
in prior sections that hold when using different forms of a TVC.
Here, we will continue using x as our variable of interest as it acts
as both outcome and predictor within the LCS model. We can
exclude intercept terms in our equations without any loss of gener-
ality in the expected results. We outline equations for all three ver-
sions of the model below, corresponding to Equations 4–6,
respectively:

yi,t = u1xi,t + u2xi,t−1 + 1i,t

= u3xi,t + u4Dxi + 1i,t

= u5xi,t−1 + u6Dxi + 1i,t.

(25)

By the process of substitution for Δxi, we can determine that the
following parameter equivalencies hold across versions of the LCS
model:

u1 = u3 + u4 = u5, u2 = −u4 = u5 − u6. (26)

However, unlike prior examples of different TVC models, the usual
specification of the LCS model limits the use of the model where we
use both the contemporaneous and change forms of the predictor (θ3
and θ4; Equation 5) because the variance of xi,t is constrained to be
zero to identify the LCS, as shown in Figure 1. As such we will be
primarily concerned with the equivalencies of the other two models:

u1 = u5, u2 = u5 − u6. (27)

Empirical Examples

We will consider two empirical examples which exemplify the
complexities of using change scores as mediators in longitudinal
models. In the first simplified example, we can consider the effect
of a TVC x measured at time t and t− 1 on an outcome measured
only at time t. This example will help us to highlight the relevant
parameter equivalencies. We then expand this into a more complex
three-variable model, where all variables are measured repeatedly.

Simple Change Score Mediation Model (White Matter and
Reading Comprehension)

For the first example, we can return to the two-wave data from the
ABCD Study (Casey et al., 2018), but this time draw a measure of
reading comprehension (Luciana et al., 2018) and mean diffusivity
of the forceps minor white matter tract (Michel et al., 2023). Here,
we will use reading comprehension as the outcome (yt) and mean
diffusivity as the time-varying predictor (xt). We can outline

5 Note that intercepts may or may not be estimated in the LCS model
depending on the goals of the analysis, so we will leave them aside here
for simplicity—including them changes nothing of what we will discuss in
this section.
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simplified versions of the two covariate models we will consider
using SEM path diagrams, as shown in Figure 2, one where the
LCS (Δx21) serves as the mediator (A) and the other where the con-
temporaneous measure of the covariate (x2) does instead (B).
We can then fit the two mediation models we laid out in Figure 2.

First, examine the pathways where our time-varying x variable is an
outcome rather than a covariate (A path in both diagrams; Table 5).
Here, we can clearly see that the proportional path (x1→ Δη) in
Figure 2a is the autoregressive path (x1→ x2) minus 1 (0.441− 1=
−0.559). Note that for autoregressive effects ,0.5, this subtraction
increases the magnitude of the estimated effect (for an autoregres-
sive effect of 0, the proportional effect is−1)6—this will have impli-
cations for our inferences that we will explore in greater detail in our
second example. In contrast, the B path is identical across models.
If we turn our attention toward the indirect effect—often the pri-

mary target of mediation analysis—we can see how this relationship
between the proportional and AR effects can present a challenge for
our inferences. In the LCS model, we have a significant negative
indirect effect (−0.129, SE= 0.058, p= .025), while in the AR
model, the indirect effect is significant and positive (0.102, SE=

0.046, p= .026). This change in sign and magnitude is the result
of the proportional versus AR path being used in computing the indi-
rect effect. Given that the effect of subtracting 1 will be quite sub-
stantial in most applications, this means that we can expect that
shifting between the different model specifications is likely to lead
to these sorts of inversions with some regularity. Without the benefit
of side-by-side model comparisons (and indeed even with the ben-
efit if we are not careful) we could imagine unsuspecting researchers
proceeding with either of these model estimates. However, these
models give inferentially opposite results, especially, if we focus
on the indirect effect as the primary estimate target. Additionally,
the simplified nature of this initial example makes these changes eas-
ier to spot. We can see how these issues, and the TVC equivalencies
we have discussed throughout, present in more complex mediation
models involving difference scores through a second empirical
example.

Extended Change Score Mediation Model (Gratitude and
Social Media Use)

Thus far, we have seen a simplified example that highlighted how
the equivalences manifest between a model where the contempora-
neous measurement of the predictor (x2) versus the LCS (Δη) is used
as a mediator. Our focus has been on highlighting the relationship

between the AR path (x1 −�ARx
x2) and the proportional path

(x1 −�
bx

Dx), where βx=ARx− 1, and how that will often cause
the indirect effect to change in magnitude and sign. However, we
have yet to see how all of the equivalencies explored thus far present
in a more realistic model of empirical data. We turn to this here.

Before fitting the models to our empirical example, it is useful to
expand on the two alternative formulations of a mediation model
with time-varying measures (in these multivariate outcomes, the
line between predictors and outcomes is murkier, so we will refer
to them generally). We can see these formulations in Figure 3,
where we can see a LCS mediation model (A) and an equivalent
autoregressive model (B) for three variables measured twice each
across four waves. We use the word “equivalent” because these
models have the exact same number of parameters and fit to the
data, similar to all of the models we have seen thus far. Indeed, as
we strip away the apparent complexity of these models, we will
see that the two models are multivariate versions of Equation 6
(lagged and change predictors) and Equation 4 (contemporaneous
and lagged predictors), respectively.

We have highlighted equivalent paths between the two models
which represent the same predictive pathways (θ1− θ12) with the
AR and proportional pathways labeled separately. We can focus
here on the relationships between the measurements of x and y2
(θ1 and θ2) to illustrate our expectations for the model results. The
LCS version of the model Figure 3A corresponds to the e and f
weights in Equation 6 denoting the effects of the lagged (e.g., x1)
and change (e.g., Δx21) predictors, respectively. By contrast, the
parameters of the AR version of the model correspond to the con-
temporaneous a and lagged b weights in Equation 4. Given the
equivalencies between model parameters Equation 9, we can expect

Figure 1
Simple Latent Change Score

Note. Here, we present the path diagram of a two-time point latent change
score model with observed repeated measures. The latent difference (Δx21)
is parameterized by setting the autoregressive path and factor loading for x2i
to 1, and constraining the residual variance of x2i to 0. In this form of the
model, we do not include latent status “phantom” variables at each time
point, and we estimate the variance of the latent difference (i.e., s2

Dx).
Here, we include the proportional regression effect (βx), which we will
build on when we move into mediation models.

6When dealing with time-series analyses, this means that a stationary pro-
cess will have proportional paths between −2 and 0, corresponding to autor-
egressive paths between −1 and 1.
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that θ2 should be identical between the two versions of the model
(i.e., a= f ). The θ1,AR parameter (x1→ y2) from the AR mediation
model (B) should be the difference between the two parameters
(θ1,LCS− θ2,LCS) from the LCS model (A). Finally, the proportional
path (βx) will be the AR path (ARx)− 1.
To illustrate these points, we drew longitudinal data from a four-

wave study of gratitude and social media use (Maheux et al., 2021),
using the covariance and mean vector for the repeated measures pro-
vided in the article. To fit themodels in Figure 3, we used ameasure of
social media use (measured as amount of time spent) from waves 1
and 2 (x), a measure of the subjective importance of social media
use from waves 2 and 3 (y), and a measure of subjective feelings of
gratitude from waves 3 and 4 (z). The principles we will highlight
using this data would generalize further to a full longitudinal model
with four repeated measures on each construct, however, this simpli-
fication allows us to see the main point without excessive redundancy.
We can examine coefficients for the direct effects between vari-

ables across the two models to demonstrate that the equivalencies
we expect from prior models appear again when using different ver-
sions of the time-varying measures Table 6.We can first compare the
proportional paths (β) with the AR paths (AR) for corresponding
variables. We can see the expected β=AR− 1 relationship holds
for all variables and clearly demonstrates that for variables with

weaker AR stability, the proportional pathway predicting the LCS
increases commensurately when using the LCS version of the
model, and vice versa.

Some parameters (θ2, θ4, etc.) are exactly equal between models,
reflecting the a= f equivalency across versions of the time-varying
predictors. The other parameters (θ1, θ3, etc.) are not equal across
models, but instead, the parameter in the AR version of the model

Figure 2
Latent Change Score and Autoregressive Mediation Models

Note. We specified two alternative mediation models using a time-varying covariate, using the latent
change score (left) and contemporaneous observed measure of x (right) as the mediators. The indirect (A
and B) and direct effect paths are highlighted. Variances/residuals and intercepts/means are omitted from
the diagram for visual clarity.

Figure 3
Extended Multivariate Time-Varying Mediation Models

Note. We specified two likelihood-equivalent forms of a multivariate
mediation model with time-varying measures. (A) A latent change score
model with lagged and change score predictors of x, y, and z, and (B) an
autoregressive model with lagged and contemporaneous variables.
Parameters capturing the same relationship share notation across models
(e.g., θ1− θ12), and show the equivalent relationships that we have outlined.
The proportional paths in the latent change score model (A; βx, βy, and βz)
and the autoregressive paths in the ARmodel (B; ARx, ARy, ARz) are related
by the equation β=AR− 1. Variances/residuals and intercepts/means are
omitted from the diagram for visual clarity. Note that while some paths
are curved to avoid overlapping with variables, all paths are single-headed
regression paths. AR = autoregressive.

Table 5
Parameter Estimates From Simple Latent Change and Autoregressive
Mediation Models

Parameter (path)
Latent difference

mediator
Contemporaneous

mediator

x1→ Δx (A path) −0.559*** (0.009)
x1→ x2 (A path) 1.000a 0.441*** (0.009)
Δx→ y (B path) 0.230* (0.103)
x2→ y (B path) 0.230* (0.103)
x1→ y (direct effect) 0.303** (0.097) 0.073 (0.090)
Indirect effect −0.129* (0.058) 0.102* (0.046)
−2ℓ 61,366.7 61,366.7

Note. −2ℓ is the −2 log-likelihood.
a Parameter is fixed rather than estimated.
* p, .05. ** p, .01. *** p, .001.
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is the difference between two parameters from the LCS version. For
instance, θ1,AR from the AR model is the difference between θ1,LCS
and θ2,LCS from the LCS model (Table 6; small inconsistencies are
due to rounding). This reflects the b= e− f equivalency. Each
pair of parameters (e.g., θ7 and θ8, θ11 and θ12) recapitulates these
equivalencies, demonstrating how the equations we derived in the
first model-free derivations radiate throughout the multivariate sys-
tem. Furthermore, like before, these models have identical fit to
the data (−2ℓ= 13, 492.1; Table 6), highlighting their equivalence
further. Despite the greater complexity of these models, our deriva-
tions continue to allow us insight into the relationships between the
two versions of the model.
While the direct effects are interesting for us in terms of extending

the equivalencies outlined in univariate models to their multivariate
counterparts, of substantive interest for most researchers would be
the indirect effects that can be estimated within the mediation mod-
els. In Table 7, we outline the estimates for the indirect effects con-
structed by multiplying pairs of parameters from Table 6. Because
we did not have access to the raw data, we could not generate boot-
strapped confidence intervals through resampling, so confidence
intervals were estimated using the traditional Delta (or “Sobel”)
method (Sobel, 1982).
We can begin by examining the mediation pathways which

include the proportional and AR pathways. Similar to what we
have seen before, the indirect effect estimates are inverted due to
the β=AR− 1 relationship in the direct effects. The corresponding
indirect effects that include βx and ARx, while opposite in sign, are
relatively similar in magnitude and significance (e.g., x1→ Δx21→
z3= 0.019, p= .028; x1→ x2→ z3 = -0.023, p= .028) because the
ARx≈ 0.5. The βy and ARy estimates, by contrast, are more unbal-
anced (βy=−0.648 vs. ARy= 0.352), which leads to larger differ-
ences in the magnitude of the resulting indirect effects (e.g., y2→
Δy32→ Δz43=−0.043, p= .015; y2→ y3→ z4= 0.024, p= .017).
Thus, as the AR effect weakens, we can expect that these coefficients
will further diverge.

The indirect effects built from our equivalent parameters, by con-
trast, show greater disparities across model types. Because of the
b= e− f equivalency, the coefficients corresponding to the eweight
in the LCS model (θ1,LCS, θ3,LCS, etc.) have a tendency to be larger
than the parameters corresponding to the b weight in the AR model
(θ1,AR, θ3,AR, etc.) which can be seen by re-arranging the above
expression to e= b+ f. When b and f have similar signs—which
is likely in these models—this should lead to larger e estimates,
which in turn will inflate the indirect effect involving these path-
ways. This manifests in the stronger indirect effects in the LCS
model compared with the AR model, as given in Table 7.
However, note that this inflation in the indirect effect is not due to
changes in a path that involves the Δy or contemporaneous y predic-
tors which distinguish the two models. Rather it is due to the lagged
y2→ z3 (θ7) relationship, which involves identical variables across
the two versions of the model. This somewhat unintuitive change
highlights the caution we need to exercise when transitioning
between versions of the model. Because we are controlling for dif-
ferent time-varying predictors, the relationships among the same
variables can shift out from under us. These models are likelihood
equivalent thus there is no difference in empirical fit that might moti-
vate one version over another—and we emphasize that neither is
wrong. We will simply have use other considerations besides fit to
select the theoretically optimal version of our time-varying mea-
sures. However, as we will discuss in the following section, it
seems that the AR model might be a useful default approach to
avoid the inversions in sign that are commonly encountered in the
change score model.

The issues highlighted here extend to a broad class of models
where change versus lagged effects might be of interest. With addi-
tional repeated measures, the LCS model can be extended to include
a growth component and LCSs from early time intervals can be used
to predict change in future time intervals—that is, change scores are
both predictors and outcomes—to capture additional dynamics
(Estrada et al., 2019; Grimm et al., 2012). The AR model can

Table 6
Parameter Estimates From Latent Change and Autoregressive Mediation Models

Parameter
Latent change score and lagged

mediation model
Contemporaneous and lagged

mediation model

βx : x1→ Δx21 −0.445*** (0.031)
ARx : x1→ x2 1.000*** (0.000) 0.555*** (0.031)
βy : y2→ Δy32 −0.648*** (0.034)
ARy : y2→ y3 1.000*** (0.000) 0.352*** (0.034)
βz : z3→ Δz43 −0.312*** (0.029)
ARz : z3→ z4 1.000*** (0.000) 0.688*** (0.029)
θ1 : x1→ y2 0.096*** (0.021) 0.037 (0.022)
u2 : Dx21 _ x2 � y2 0.060** (0.023) 0.060** (0.023)
u3 : x1 � Dy32 _ y3 0.003 (0.019) −0.005 (0.020)
u4 : Dx21 _ x2 � Dy32 _ y3 0.008 (0.020) 0.008 (0.020)
θ5 : x1→ z3 −0.060*** (0.018) −0.018 (0.019)
u6 : Dx21 _ x2 � z3 −0.042* (0.019) −0.042* (0.019)
θ7 : y2→ z3 0.190*** (0.039) −0.023 (0.034)
u8 : Dy32 _ y3 � z3 0.212*** (0.035) 0.212*** (0.035)
u9 : x1 � Dz43 _ z4 −0.009 (0.014) −0.026+ (0.014)
u10 : Dx21 _ x2 � Dz43 _ z4 0.016 (0.014) 0.016 (0.014)
u11 : y2 � Dz43 _ z4 0.039 (0.030) −0.028 (0.026)
u12 : Dy32 _ y3 � Dz43 _ z4 0.067* (0.027) 0.067* (0.027)
−2ℓ 13,492.1 13,492.1

Note. −2ℓ is the −2 log-likelihood. AR = autoregressive.
* p, .05. ** p, .01. *** p, .001.
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likewise be extended in a myriad of ways, with lagged relationships
being a key feature of various forms of cross-lagged panel models
(Hamaker et al., 2015; Usami et al., 2019), AR latent trajectory mod-
els (Bollen & Curran, 2004), latent curve models with structured
residuals (Curran et al., 2014), and dynamic structural equationmod-
els (Asparouhov et al., 2018). While these extensions grow increas-
ingly complex, the principles we have outlined here extend naturally
into these models, suggesting that there multiple equivalent ways to
capture the same dynamics that might give superficially different
(and inverted) inferences.

Recommendations for Applied Research

Staring with simple arithmetic expressions all the way up to the
complexity of multivariate longitudinal models, we have seen how
the apparent differences between using contemporaneous (xt),
lagged (xt−1), and change (Δx) forms of a TVC belie underlying
equivalencies. In particular, we showed that all forms of the model
contain the same information, and simply package the predictive
effect in different ways depending on which form of the covariate
used. While useful for understanding the models themselves, these
equivalencies might leave applied researchers unsure how to pro-
ceed—as all models fit precisely equally, and we can get all alterna-
tive model results from any given exemplar.
From one perspective, these equivalencies can be used to justify

any of the approaches outlined here, similar to the residualized ver-
sus change score as outcomes debate (Castro-Schilo & Grimm,
2018). As such, if researchers have strong theoretical reasons to
frame the effect of the TVC in terms of change scores, then they
can proceed without compromising the ability to explain variation
in the outcome. Additionally, change scores can be more intuitive
compared with residualized change models when interpreting
these prospective associations (Willett, 1997). However, by the

same logic, neither should researchers privilege the inferences of
the change predictor as being theoretically distinct from using the
contemporaneous and lagged versions of the TVC, they are merely
transformations of one another.

From another perspective, our results suggest several reasons why
the form of the model with the contemporaneous and lagged forms
of the TVC Equation 4—and not the change score—would be useful
as a default approach. First, xt and xt−1 are variables that we directly
measure, while Δx is a derived composite—whether computed as a
data step or modeled directly as a latent difference. However, unlike
some composites, like product terms used to estimate interactions,
purely additive composites (like difference scores) cannot explain
additional variance net their constituent parts. This means that we
could not include xt, xt−1, and Δx in the same model and still obtain
unique estimates (McCormick et al., 2022), which we can do in the
case of product composites. As we saw in Table 2, we also cannot
avoid this by only including the Δx predictor because of the highly
unlikely constraint that places on the model—where it is equivalent
to xt and xt−1 having regression coefficients of equal magnitude but
opposite sign. Additionally, due to the composite nature of Δx, its
effect can be completely driven by the contemporaneous xt rather
than any form of prospective relationship, which is the putative
aim of including this form of the TVC.

Another issue becomes apparent in the multivariate mediation
models we discussed, which is the relationship between the AR
and proportional parameters, as given in Table 6.What is of potential
concern is that as the autoregressive effect tends toward zero, the pro-
portional effect tends toward−1. In other words, when the observed
repeated measures are completely unrelated over time (i.e., zero
autocorrelation), there becomes a deterministic inverse relationship
between the lagged version of the TVC and the change score
which introduces possibilities for misinterpretation. That is because
while the proportional parameter in the LCS model is most often

Table 7
Indirect Effect Estimates From Latant Change and Autoregressive Mediation Models

Parameter
Latent change score and lagged

mediation model
Contemporaneous and lagged

mediation model

x1bxDx21u2y2 −0.027** (0.010)
x1ARxx2u2y2 0.033** (0.013)
x1bxDx21u4Dy32 −0.004 (0.009)
x1ARxx2u4y3 0.005 (0.011)
x1bxDx21u6z3 0.019* (0.009)
x1ARxx2u6z3 −0.023* (0.011)
x1bxDx21u10Dz43 −0.007 (0.006)
x1ARxx2u10z4 0.009 (0.008)
y2byDy32u8z3 −0.137*** (0.024)
y2ARyy3u8z3 0.075*** (0.014)
y2byDy32u12Dz43 −0.043* (0.018)
y2ARyy3u12z4 0.024* (0.010)
x1u1y2u7z3 0.018*** (0.005) −0.001 (0.001)
x1u1y2u11Dz43 _ z4 0.004 (0.003) −0.001 (0.001)
Dx21 _ x2u2y2u7z3 0.011* (0.005) −0.001 (0.002)
Dx21 _ x2u2y2u11Dz43 _ z4 0.002 (0.002) −0.002 (0.002)
x1u3Dy32 _ y3u8z3 0.001 (0.004) −0.001 (0.004)
x1u3Dy32 _ y3u12Dz43 _ z4 0.000 (0.001) 0.000 (0.001)
Dx21 _ x2u4Dy32 _ y3u8z3 0.002 (0.004) 0.002 (0.004)
Dx21 _ x2u4Dy32 _ y3u12Dz43 _ z4 0.001 (0.001) 0.001 (0.001)
−2ℓ 13,492.1 13,492.1

Note. −2ℓ is the −2 log-likelihood. AR = autoregressive.
* p, .05. ** p, .01. *** p, .001.
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interpreted as how prior status predicts subsequent change, it more
accurately reflects the strength of the AR effect minus the perfect pre-
diction of xt−1 on itself within the change score (e.g., xt−1→
Δx= (xt− xt−1). While we stress that this is not wrong, per se, and
equivalently describes the data, this composite nature of Δx leads
to a higher likelihood for misinterpretation of the time-varying rela-
tionships for these reasons.

Summary and Conclusions

Here, we extended a long history of concern for the use of resi-
dualized versus difference scores in the study of change from its tra-
ditional focus on outcomes to instead examine predictors. We
showed a general derivation for how the effects of contemporaneous,
lagged, and difference score versions of a given TVC relate to one
another, with relationships for transforming between these parame-
ters. We then demonstrated how these relationships impact estimates
and interpretations in applications of TVCs within the multiple
regression model and the multilevel model using empirical data to
highlight the inferential challenges related to the choice of TVC
model. We showed that these parameter transformations hold across
a range of ancillary modeling decisions, including whether to control
for baseline status in the outcome and the inclusion of random
effects. Finally, we synthesized past and current research to highlight
how the use of change scores as both outcome and predictor within a
mediation model can alter the estimation of indirect effects using the
LCS model, and urged caution regarding the use of change scores in
these analyses. These results offer a nice symmetry of considering
long-standing issues of change in both outcomes and covariates,
and shrink the conceptual distance between considerations for the
TVC versus multivariate approaches for modeling change.AQ7

¶
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Appendix

Full Covariance Matrix Transformations

To obtain the relationships between all variance and covariance
parameters between the two models simultaneously, we can take a
matrix-based approach (see McCormick, 2023a for details on this
approach), where we pre and postmultiply the Jacobian matrix of
partial derivatives of the fixed effects transformations (i.e.,
Equation 20) with respect to the parameters of the reference
model. For instance, to obtain the covariance matrices (T) for

Equation 17 (model with xi,t and Δxi) and Equation 18 (model
with xi,t−1 and Δxi) from Equation 16 (model with xi,t and xi,t−1),
we would compute the following expressions:

T(c,d) = J′(c,d) T(a,b) J(c,d),

T(e,f ) = J′(e,f ) T(a,b) J(e,f ),
(A1)
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where J(c,d ) and J(e,f ) contain partial derivatives of the following
form:

J(c,d) =
∂(c = a+ b)

∂a

∂(d = −b)
∂a

∂(c = a+ b)
∂b

∂(d = −b)
∂b

⎡
⎢⎣

⎤
⎥⎦ = 1 0

1 −1

[ ]
,

J(e,f ) =
∂(e = a+ b)

∂a

∂(f = a)
∂a

∂(e = a+ b)
∂b

∂(f = a)
∂b

⎡
⎢⎣

⎤
⎥⎦ = 1 1

1 0

[ ]
,

(A2)

and apply the necessary quadratic transformations to both the vari-
ances on the diagonal and covariances (or correlations if we stand-
ardize T) on the off-diagonal. Note that the −1 in J(c,d ) Equation
A2 will result in the random effect correlation of xi,t and Δxi being

opposite in sign to the correlation in the other alternative TVC
models.

Incidentally, as outlined by McCormick (2023a), this matrix-
based approach could alternatively be used to compute the standard
errors by pre and postmultiplying the asymptotic covariance matrix
of the fixed effects—ACOV(g)—by the Jacobian instead, with the
form:

ACOV(g)(c,d) = J′(c,d) ACOV(g)(a,b) J(c,d),
ACOV(g)(e,f ) = J′(e,f ) ACOV(g)(a,b) J(e,f ),

(A3)

and taking the square root of the diagonal of the resulting matrix.
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