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Moderating the Consequences of Longitudinal Change for Distal Outcomes

Ethan M. McCormicka,b 

aEducation Statistics and Research Methods, School of Education, University of Delaware, Newark, Delaware, USA; bMethodology & 
Statistics Department, Institute of Psychology, Leiden University, Leiden, Netherlands 

ABSTRACT 
There has been a growing interest in using earlier change to predict downstream distal out
comes in development; however, prior work has mostly focused on estimating the unique 
effect of the different growth parameters (e.g., intercept and slope) rather than focusing on 
the trajectory as a whole. Here I lay out a distal outcome latent curve model with latent 
interactions which attempts to model the joint effect of growth parameters on these later 
outcomes. I show again that these models require us to contend with unintuitive time cod
ing effects which can impact the direction and significance of effects and that plotting and 
probing are necessary for disambiguating these joint effects. These graphical approaches 
emphasize practical steps for applied researchers in understanding these effects. I then out
line how future research can help clarify optimal approaches for using the trajectory as a 
whole rather than the unique effects of its individual sub-components.

KEYWORDS 
Latent curve model; distal 
outcome; latent interaction; 
time coding; regions of 
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Introduction

The latent curve model (LCM) is a flexible framework 
for modeling individual differences in change over time 
(Bollen & Curran, 2006; Grimm et al., 2016; Meredith 
& Tisak, 1990), and incorporating the effect of time- 
invariant and time-varying predictors (Biesanz et al., 
2004; Curran et al., 2004; McCormick et al., 2023; 
McNeish & Matta, 2020). In developmental and clinical 
applications, however, researchers are often interested 
in not only the course and causes of change, but also 
the consequences for later distal outcomes (Curran et al., 
2010). This latter extension of the latent curve model 
has received less attention (but see Muth�en and Curran 
(1997); Seltzer et al. (1997); von Soest and Hagtvet 
(2011)) and involves the use of the growth process itself 
to predict distal outcomes (i.e., the consequences of 
developmental change). In recent work (McCormick 
et al., 2024), we formally laid out the model for a latent 
curve model with distal outcomes, investigated the role 
of time coding for the parameters of the model, and 
proposed methods for optimally estimating the distal 
outcome predictive relationships (Feng & Hancock, 
2022; Hancock & Choi, 2006). Here, I expand this 
approach to consider the joint effect of the growth 

factors via latent moderation within the distal outcome 
LCM framework and explore how it can help bridge a 
conceptual divide between a holistic characterization of 
change over time and the downstream consequences of 
development.

Our prior work focused on models with additive 
effects of the growth factors on distal outcomes, with 
our primary concern being obtaining maximally inter
pretable unique estimates of each factor controlling 
for the other (McCormick et al., 2024). This additive 
specification is straightforward and familiar from 
regression contexts, but can be conceptually limiting 
when the substantive focus is on overall patterns of 
change rather than the unique contribution of each 
factor. That is, while we can obtain unique parameter 
estimates to characterize each growth factor and its 
respective effects, they fundamentally measure differ
ent aspects of the same thing: the holistic trajectory of 
developmental change. Below, I contrast this main 
effects approach with another factor model context 
where we might wish to predict some distal outcome 
to make this point more clearly.

Consider a longitudinal study of the effects of ado
lescent anxiety and depression on substance use dur
ing adulthood. While we would similarly regress 
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substance use on the two (likely correlated) factors, 
fundamentally, the two latent factors are defined by 
different items and measurement structures. By con
trast, we estimate both intercepts and slopes from the 
same set of items in the growth model (albeit with 
strictly defined rather than estimated factor loadings), 
and both factors jointly characterize an individual’s 
trajectory over time. In this light, obtaining unique 
effects on a distal outcome seems a poor conceptual 
fit to the idea of using individual differences in 
growth as a whole to predict downstream consequen
ces. Unique effects are also limited if we expect theor
etical differences in the effect of increases or decreases 
in some behavior based on its initial or average level. 
For instance, the consequences of adolescence-specific 
increases in antisocial behavior very likely differ for 
teens starting with low baseline levels compared with 
teens already showing heightened negative behaviors. 
In each of these cases in particular, a holistic under
standing of change is necessary to contextualize the 
distal outcome relationship.

One potential alternative for capturing such joint 
patterns is the growth mixture or latent class approach 
(Bauer & Reyes, 2010; Jung & Wickrama, 2008; 
Muth�en & Muth�en, 2000; Nagin, 1999), which posits 
latent subgroups with qualitatively-distinct overall pat
terns of change. These subgroups are often named 
based on joint trajectory information, with common 
examples being “high-stable” or “low-increasing” (Sher 
et al., 2011). Latent class models have well-developed 
techniques for predicting outcomes from using class 
membership (e.g., Li et al., 2001; Nylund-Gibson et al., 
2019), and are attractive when qualitatively different 
“kinds” of trajectories are expected (Bauer & Curran, 
2003; Bauer & Reyes, 2010). However, these models 
also present several challenges, including returning 
inappropriate group solutions (Bauer, 2007; Bauer & 
Curran, 2003; Hipp & Bauer, 2006; Sher et al., 2011), 
difficulties in class enumeration (Kim, 2014; Nylund 
et al., 2007), and a propensity to discretize continuous 
heterogeneity in growth (e.g., returning stacked “high”, 
“medium”, and “low” classes).

In cases of continuous heterogeneity, a continuous 
bilinear interaction has an attractive theoretical match to 
the idea of joint prediction of the distal outcome from 
the trajectory of change as a whole without assuming 
discrete classes. Namely, capturing how the effect of one 
feature of the trajectory (e.g., the slope) varies as a func
tion of another (e.g., the intercept). To model all these 
effects, I lay out a moderated distal outcome latent curve 
model where the joint effect of the growth factors is 
used as an additional predictor in an attempt to bring 

greater conceptual clarity between prior growth and 
downstream consequences. I consider two potential 
approaches to estimating latent interactions and contrast 
their performance in a series of targeted simulations to 
assess the feasibility of estimating these latent moderation 
models. Next, given the inferential challenges associated 
with time coding decisions in the main effects model 
(McCormick et al., 2024), I also evaluate the potential 
estimation and inferential challenges in this expanded 
model related to intercept placement. As expected, the 
attendant complications are expanded in the moderated 
distal outcome LCM, and so I extend a set of tools used 
to evaluate moderation effects graphically and demon
strate a method for obtaining maximally interpretable 
joint effects. I conclude with a demonstration of these 
principles in real data and a set of recommendations for 
researchers in applied settings.

Latent interactions

Interactions are a key component in the application of 
the multiple regression model (Aiken & West, 1991), 
and have been used extensively to assess how the 
effect of a target predictor changes across levels of 
another predictor (or set of predictors in high-order 
interactions). In the context of latent curve models, 
there has been extensive development of methods for 
probing and plotting interactions that arise as a func
tion of conditioning the growth factors on a set of 
predictors (Curran et al., 2004; Preacher et al., 2006). 
Interactions also arise in structural equation models 
more broadly in multiple-groups models (J€oreskog, 
1971; S€orbom, 1974) and their generalization in mod
erated nonlinear factor models (Bauer, 2017; Bauer & 
Hussong, 2009). However, these interactions differ in 
one fundamental point from those we might consider 
here in that they involve at least one observed variable 
as a constituent of the product term. By contrast, we 
are interested in estimating the interaction effect of 
two unobserved latent factors. While many of the 
principles of specifying, probing, and plotting these 
latent interactions remain familiar from their observed 
variable counterparts, there are additional estimation 
challenges we need to take into consideration. Below, 
I begin by specifying the latent interaction growth 
model with distal outcomes, and then consider two 
alternative approaches for estimating this model.

Latent interaction growth models with distal 
outcomes

We can specify the latent interaction model (Figure 1) 
by expanding the main effects model I outlined in 
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McCormick et al. (2024). I briefly recapitulate the 
general LCM with distal outcomes structure here and 
then move on to incorporate the latent interaction. 
For a vector of repeatedly-assessed outcome variables 
yi for individual i ¼ 1, 2, :::, N at time t ¼ 1, 2, :::, T;
we can define a latent growth process with the meas
urement structure

yi ¼ Kgi þ ei (1) 

with K as a T � K matrix of factor loadings of the 
intercept (kt, 1 ¼ 1 8 t) and powered values of time 
(t) for k ¼ 1, 2, :::, K latent growth factors, gi as a K- 
length vector of latent factors, and ei as a T-length 
vector of time-specific residuals of yi; which are dis
tributed as ei � MVNð0, HÞ: The structural model 
inter-relating the growth factors and distal outcome(s) 
is defined as

gi ¼ aþ Bgi þ fi (2) 

where the K-length vector gi is defined by a K-length 
vector of factor intercepts (a) and a K-length vector of 
factor disturbances (fi) which are distributed as fi �

MVNð0, WÞ; and are inter-related with B; a lower- 
triangular K � K matrix of regression coefficients. For 
the inclusion of the distal outcomes into the model, we 
can expand the K-length vector gi to include additional 
factors in the structural model gz, i which are related to 
the P-length vector of observed distal outcomes 
through an indicator factor approach (kzp , gz, i ¼ 1) or 
for multiple-indicator latent factors through a more- 
conventional measurement structure. As an example, 
we can consider a linear latent growth curve model 
defined by 5 repeated measures with a single distal out
come and expand our matrix expressions in Equation 1
and 2 to define the measurement model as

y1i
y2i
y3i
y4i
y5i
z1i

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

g1i
g2i
gz1i

2

4

3

5þ

e1i
e2i
e3i
e4i
e5i
ez1i

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(3) 

with covariance matrix H for ei: Note that yti and zpi 
appear in the same outcome vector but are related by 
the factor loadings to distinct factors—g1i (the inter
cept) and g2i (the slope) for yti; and gpi for the distal 
outcome (zpi). At the structural level, we can partition 
the relationships between the factors in gi by specify
ing unique covariance blocks among the growth fac
tors and distal outcome factors separately in W; and 
structuring the relationships between the growth fac
tors and distal outcome factors as regressions in B:
The expanded structural model would be

g1i
g2i
gz1i

2

4

3

5 ¼

a1
a2
az1

2

4

3

5þ

0 0 0
0 0 0

bz1, g1
bz1, g2

0

2

6
4

3

7
5

g1i
g2i
gz1i

2

4

3

5þ

f1i
f2i
fz1i

2

4

3

5

(4) 

with a covariance matrix of W with the form

W ¼

w11 w12 0
w21 w22 0

0 0 wz

2

4

3

5 (5) 

with zeros on the block off-diagonals to avoid redun
dancy with the regression coefficients in B: The 
model-implied moment structure—mean lðhÞ and 
covariance matrix RðhÞ—can then be expressed using 
standard notation (e.g., Bollen, 1989) as

lðhÞ ¼ Ka

RðhÞ ¼ KðI − BÞ−1
WðI − BÞ−10

K0 þH

(6) 

Figure 1. Latent Interaction Model. The distal outcome (z1i; specified by a single-indicator factor gz1 i) is modeled as a function of 
the intercept (g1i) and slope (g2i) of the growth process of the observed repeated measures (yti), as well as their bilinear inter
action (g1ig2i; small black circle with arrows extending from both factors). Factor loadings for yti are summarized as 1’s for the 
intercept and linearly increasing values of time (t) centered through some shift value (a).
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With this foundation in place, we can then con
sider a model which expands these expressions to 
include a bilinear interaction between the intercept 
and slope growth factors as an additional predictor of 
the distal outcome. Here we expand Equation 2 to 
include the latent interaction as

gi ¼ aþ Bgi þDg0i�gi þ fi (7) 

where � is a K � K upper-triangular matrix of regres
sion coefficients associated with latent interactions 
among endogenous latent variables (gi), with quad
ratic effects on the diagonal (e.g., g2

2i), and bilinear 
effects on the off-diagonal (e.g., g1ig2i). In the example 
distal outcome growth model above, this would take 
the form

� ¼

0 t12 0
0 0 0
0 0 0

2

4

3

5 (8) 

to indicate the bilinear effect of g1i and g2i (t12). The 
K � 1 indicator matrix D controls the target of the 
latent interaction(s) for a given element in gi: For 
example

D ¼
0
0
1

2

4

3

5 (9) 

indicates that t12 targets the distal outcome factor 
(gz1i). In the model we have outlined thus far, we only 
need a single � and D matrix to model the joint 
effect of the latent growth factors on the one distal 
outcome; however, for additional distal outcomes (or 
generally additional interaction effects on any other 
factors), we would need to specify a series of � matri
ces targeting different variables in gi: For P inter
action targets, Equation 7 takes a more general 
notation of

gi ¼ aþ Bgi þ
XP

p¼1
Dp g0i� pgi
� �

þ fi (10) 

Note that in Equation 10 we only model the effects 
of interactions—including the possibility of quadratic 
effects—between endogenous latent variables, however, 
we could also use a similar formulation to model 
interactions between exogenous latent variables (ni) 
with a set of K � K upper-triangular matrices X 

(Kelava et al., 2011), and between endogenous and 
exogenous latent variables with a set of K � K upper- 
triangular matrices P (Jin et al., 2021). Each p inter
action target is modeled with a unique set of matrices 
D; � ; P; and X with the relevant interaction effects 
for that outcome target.

gi ¼ aþ Bgi þ
XP

p¼1
Dp g0i� pgi þ n0iPpgi þ n0iXpni
� �

þ fi

(11) 

While alternative formulations for latent interac
tions exist (see Jin et al., 2021), this relatively simple 
additive form will be useful for clarifying the deriva
tions of time coding effect that I outline in the follow
ing section.

By conventions of model path diagrams, we can 
visualize the latent interaction as a small, solid circle 
with arrows pointing to it from the constituent 
growth factors (Figure 1). We can then represent the 
effect of the latent interaction on the distal outcome 
(tz, g1�g2 ) with an additional regression arrow. This 
bilinear effect of g1ig2i then represents the change in 
the main effect of one factor per unit change in the 
other. Because of the primary theoretical interest in 
the predictive effect of the slope on the distal out
come, I will interpret this bilinear effect primarily as a 
measure of how the predictive effect of the slope fac
tor changes at different levels of the intercept factor 
(although the interaction is of course symmetric). 
While here I present the simple linear growth model 
with a single distal outcome, this model could be 
straightforwardly expanded to include nonlinear 
growth factors and multiple distal outcomes using 
Equation 10 and 11 (see Appendix for an expanded 
explication in these expanded models).

Estimation approaches

There have been a variety of approaches proposed for 
estimating latent interaction historically including prod
uct indicators (Foldnes & Hagtvet, 2014; Kenny & 
Judd, 1984), latent moderated structural equations 
(LMS; Klein & Moosbrugger, 2000; Moosbrugger et al., 
2009), and two-step Structural After Measurement 
(SAM; Li et al., 2000; Rosseel & Loh, 2024) approaches. 
Neither the LMS nor the SAM approach require 
observed product indicators, which is especially useful 
in the growth context, where we do not have distinct 
sets of indicators to create products from—rather, the 
interaction needs to be estimated directly out of the 
latent variables defined by a single set of indicators. The 
LMS approach is derived under the assumption of joint 
multivariate normality of all latent variables and resid
uals, and models the non-normality inherent in an 
interaction term through a finite Gaussian mixture 
approximation (for technical details, see Klein & 
Moosbrugger, 2000), while the SAM approach generates 
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corrected factor scores in a first measurement estima
tion step, and creates an observed product interaction 
in the second structural model estimation step (Rosseel 
& Loh, 2024). One limitation of both the LMS and 
SAM approaches is the lack of standard fit indices to 
evaluate the model. The standard saturated model is 
not an appropriate baseline for the nonlinear factor 
model using the LMS approach (Kelava et al., 2011); 
thus, proper v2 goodness-of-fit tests cannot be per
formed, and all associated fit indices (e.g., CFI, TLI, 
RMSEA, etc.) are unreliable. Likewise, the second-step 
SAM model is often just-identified with no parameter 
constraints, and also limits fit-based evaluations of the 
predictions of the distal outcome. As such, here I will 
primarily focus on parameter recovery, and will rely on 
the Bayesian Information Criteria (BIC) when model 
comparisons are necessary.

Because the LMS approach relies on joint multi
variate normality, it is sensitive to the distributional 
specification of the latent variables in particular (Klein 
& Moosbrugger, 2000; Lonati et al., 2025), and multi
variate tests of the observed indicators and Hausman 
tests of the latent variables are recommended in prac
tice (Lonati et al., 2025) to ensure conformation to 
these assumptions. The SAM approach, by contrast, 
avoids these distributional assumptions through the 
use of observed scores to create the product term. To 
focus this investigation on the conceptual use-case of 
latent interactions for predicting distal outcomes from 
the trajectory as a whole and potential issues of time 
coding, the main simulations here conform to the 
LMS assumption of joint normality. A set of simula
tions on the recovery of the LMS and SAM on data 
generated with (weakly) non-normal latent variables 
(marginally distributed as Gumbel variates) are pre
sented in the Supplemental Material. As expected, the 
LMS results are compromised under these data condi
tions, especially with respect to the standard error 
estimates.

Evaluating LMS versus SAM performance

To evaluate whether the two estimation approaches 
appropriately capture the interaction effect of the 
growth factors on the distal outcomes as expected, I 
simulated data from the following population 
moments,

a ¼ 3 0:2
� �

Wstd ¼

1 0:15 0
0:15 1 0

0 0 1

2

4

3

5

B ¼
0 0 0
0 0 0

0:2 0:1 0

2

4

3

5 � ¼

0 0:05 0
0 0 0
0 0 0

2

4

3

5, 

and fit the resulting data with both the one-step LMS 
(Moosbrugger et al., 2009), and the two-step 
Structural After Measurement (SAM; Rosseel & Loh, 
2024) approach using the specified bilinear interaction 
LCM with distal outcomes. For all models, I estimated 
the intercept at the first repeated measure (k12 ¼ 0). 
To systematically evaluate the recovery of the latent 
interaction effects under various conditions, I simu
lated data while varying the following design factors: 
the sample size n 2 f100, 250, 500g; and the number 
of repeated measures observations t 2 f3, 5g to define 
the growth factors. For each of 1000 simulated data 
sets, I fit the model in three ways: 1) the latent mod
erated structural equation (LMS) approach in Mplus, 
2) the Structural After Measurement (SAM) approach 
with naive standard errors in lavaan, and 3) the 
SAM approach with bootstrapped standard errors 
(1000 bootstrap samples). The results for parameter 
recovery can be seen in Table 1, and the results for 
standard error recovery can be seen in Table 2 (all 
code required to replicate these results is available in 
the Supplemental Material).

The recovery of parameter estimates for the target 
distal outcome regression was similar for both the 
LMS and SAM approaches in terms of the average 

Table 1. Parameter Recovery: LMS and SAM Estimates.
LMS Estimates SAM Estimates

n ¼ 100 n ¼ 250 n ¼ 500 n ¼ 100 n ¼ 250 n ¼ 500

r ¼ 854=997 r ¼ 976=1000 r ¼ 997=1000 r ¼ 1000=1000 r ¼ 1000=1000 r ¼ 1000=1000

bz, g1
¼ 0:20 t ¼ 3 0.198 (0.081) 0.204 (0.058) 0.202 (0.036) 0.194 (0.125) 0.194 (0.088) 0.199 (0.050)

t ¼ 5 0.204 (0.063) 0.200 (0.036) 0.201 (0.026) 0.205 (0.075) 0.201 (0.039) 0.201 (0.027)
bz, g2

¼ 0:10 t ¼ 3 0.136 (0.480) 0.124 (0.235) 0.113 (0.172) 0.127 (1.28) 0.042 (0.870) 0.097 (0.436)
t ¼ 5 0.083 (0.317) 0.092 (0.182) 0.096 (0.148) 0.096 (0.509) 0.102 (0.270) 0.091 (0.186)

tz, g1g2
¼ 0:05 t ¼ 3 0.042 (0.129) 0.036 (0.061) 0.045 (0.048) 0.035 (0.466) 0.072 (0.313) 0.050 (0.142)

t ¼ 5 0.050 (0.091) 0.051 (0.061) 0.050 (0.043) 0.052 (0.157) 0.051 (0.085) 0.052 (0.059)

Note: For each sample size (n, column) and number of repeated measures (t, row), the mean effect estimate is shown with the standard deviation of 
effects in parentheses. The number of replications that converged r is indicated for t ¼ 3=t ¼ 5: The generating values for the main effect of the inter
cept (bz, g1

), main effect of the slope (bz, g2
), and bilinear interaction effect (tz, g1g2

) are shown in the leftmost column. There were no instances where the 
generating value was not contained in 6 1 SD of the average recovered effect. Monte Carlo standard errors were small (MMCSE ¼ 0:0065; range ¼
0:0008 − 0:0405) across effects.
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estimate, although there was greater variability in the 
SAM estimates across almost all conditions (see 
Table 1). Increasing both t and n improved the recovery 
of effects and shrank the variability of estimates, sug
gesting multiple avenues for improving estimates in real 
data. However, even at relatively low sample sizes and a 
minimal number of repeated measures (n ¼ 100;
t ¼ 3), the recovered effects of the latent interaction 
(tz, g1g2 ) were reasonable, especially for the LMS 
approach, suggesting that probing for the latent inter
action effect is feasible in many applied settings. By 
contrast, the recovery of the main effect of the slope 
(bz, g2

) was poorest among all the considered effects, 
especially at low n and t, which may be related to the 
relatively extreme value of g1i ¼ 0 (compared with 
a1 ¼ 3) it is evaluated at.

For the standard errors, the greater efficiency of the 
LMS approach (in a properly specified model)1 is evident 
compared to the SAM approaches (naive vs. bootstrap 
SEs), with much smaller variability in recovered effects. 
The LMS standard error estimates approximated the 
empirical variability in the recovered effect estimates well 
in most conditions for this model specification, although 
it tended to show too-small standards errors at higher 
sample sizes (n ¼ 250 and 500) and number of repeated 
measures (t ¼ 5). The SAM approaches diverged in 
expected ways. The naive standard errors in the two- 
stage SAM approach substantially underestimated the 

empirical variability, while the bootstrap approach cor
rected for the increased uncertainty in recovered effects. 
Indeed, the bootstrap approach sometimes over-corrected, 
with a higher average SE estimate than the empirical vari
ability, although the true variability was almost always 
contained within one standard deviation of S.E.s recov
ered. Both the LMS and bootstrap SAM approaches 
underestimated the uncertainty of the bilinear interaction 
in the smallest sample size (n ¼ 100) and number of 
repeated measures (t ¼ 3).

Time coding effects in the latent interaction model

The inferential challenge of time coding influences on 
parameter recovery is well documented in the general 
(Biesanz et al., 2004) and main effects distal outcome 
(McCormick et al., 2024) latent curve model, and for 
many parameters, the time coding relationships have 
been previously defined. For a given set of data with 
two different time coding schemes (e.g., intercept at 
the first and the final time point), we can define a 
transformation matrix T which relates the factor load
ing matrices of the two models. In a linear growth 
model, T has the form

T ¼ 1 a
0 b

� �

(13) 

where a moves the location of the intercept through 
addition (see Figure 1) and b scales the slope through 
multiplication with the factor loadings. For purposes 
of this treatment, I assume that b ¼ 1: For consistency 
with the single-indicator latent factor approach I used 

Table 2. Standard Error Recovery: LMS and SAM Estimates.
LMS Estimates SAM Estimates

SDempirical S.E. SDempirical S:E:naive S:E:bootstrap

bz, g1
n ¼ 100 t ¼ 3 0.081 0.057 (0.108) 0.125 0.028 (0.014) 0.135 (0.065)

t ¼ 5 0.063 0.044 (0.022) 0.075 0.029 (0.009) 0.124 (0.097)
n ¼ 250 t ¼ 3 0.058 0.043 (0.059) 0.088 0.019 (0.008) 0.165 (0.102)

t ¼ 5 0.036 0.027 (0.010) 0.039 0.018 (0.003) 0.044 (0.034)
n ¼ 500 t ¼ 3 0.036 0.026 (0.017) 0.050 0.013 (0.004) 0.179 (0.128)

t ¼ 5 0.026 0.019 (0.004) 0.027 0.013 (0.001) 0.022 (0.006)
bz, g2

n ¼ 100 t ¼ 3 0.480 0.300 (0.395) 1.28 0.182 (0.193) 1.06 (0.482)
t ¼ 5 0.317 0.214 (0.092) 0.509 0.177 (0.068) 0.981 (0.760)

n ¼ 250 t ¼ 3 0.235 0.192 (0.150) 0.870 0.118 (0.132) 1.39 (0.752)
t ¼ 5 0.182 0.136 (0.034) 0.270 0.108 (0.025) 0.333 (0.343)

n ¼ 500 t ¼ 3 0.172 0.134 (0.064) 0.436 0.082 (0.056) 1.62 (1.10)
t ¼ 5 0.148 0.096 (0.017) 0.186 0.075 (0.012) 0.150 (0.055)

tz, g1g2
n ¼ 100 t ¼ 3 0.129 0.080 (0.054) 0.466 0.060 (0.059) 0.337 (0.144)

t ¼ 5 0.091 0.065 (0.024) 0.157 0.055 (0.023) 0.328 (0.253)
n ¼ 250 t ¼ 3 0.061 0.051 (0.024) 0.313 0.039 (0.042) 0.452 (0.240)

t ¼ 5 0.060 0.042 (0.011) 0.085 0.034 (0.008) 0.107 (0.110)
n ¼ 500 t ¼ 3 0.048 0.037 (0.012) 0.142 0.026 (0.019) 0.526 (0.335)

t ¼ 5 0.043 0.030 (0.005) 0.059 0.024 (0.004) 0.047 (0.018)

Note: For each sample size (n) and number of repeated measures (t), the empirical standard deviation (SDempirical ; from Table 1) of effects is compared 
with the average standard error (S.E.) estimate, with the standard deviation of recovered S.E.s in parentheses. Instances where the SDempirical was not 
contained in 6 1 SD of the average recovered S.E. are bolded. The results are organized by effect, including the main effect of the intercept (bz, g1

), 
main effect of the slope (bz, g2

), and bilinear interaction effect (tz, g1g2
). Monte Carlo standard errors were small (MMCSE ¼ 0:0054; range ¼

0:0001 − 0:0346) across effects.

1See the Supplemental Material for a brief simulation with non-Gaussian 
latent variables, where the LMS recovery of standard errors is 
compromised compared with the bootstrap SAM approach.
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in Figure 1, I expand T by 1 dimension with 1’s on 
the diagonal and zeros otherwise

T ¼
1 a 0
0 b ¼ 1 0
0 0 1

2

4

3

5 (14) 

Using this expanded matrix, the results of any one 
model solution can be transformed into another, 
resulting in a transformed factor loading matrix (K�)

K� ¼ KT (15) 

a transformed covariance matrix (W�)

W� ¼ T−1WT−10 (16) 

with the inverse transformation matrix (T−1)

T−1 ¼ K�
0

K�ð Þ
� 1

K�
0

K (17) 

and mean vector (a�)

a� ¼ T−1a (18) 

and with a transformed matrix of regression coeffi
cients of the growth factors on the distal outcome(s)2

B� ¼ BT (19) 

To incorporate latent interactions into this time coding 
framework, I derived a similar expression to transform 
between interaction parameter estimates obtained under 
two given time coding schemes, which results in the fol
lowing equality (see Appendix for detailed derivations)

� � ¼ T0�T (20) 

Using T from Equation 14 with a ¼ −4 and t21 ¼

0:05; I show that with an original

� � ¼

t11 t12 0
0 t22 0
0 0 0

2

4

3

5 ¼

0 0:05 0
0 0 0
0 0 0

2

4

3

5 (21) 

then � � is

� � ¼ T0�T ¼

1 0 0
−4 1 0
0 0 1

2

6
4

3

7
5

0 0:05 0
0 0 0
0 0 0

2

6
4

3

7
5

1 −4 0
0 1 0
0 0 1

2

6
4

3

7
5

¼

0 0:05 0
0 −0:2 0
0 0 0

2

6
4

3

7
5

(22) 

Two points of interest emerge out of this quadratic 
expression. First, the bilinear interaction effect of the 
growth factors is time coding invariant, such that

t�12 ¼ t12 (23) 

However, the point of concern is that in order to 
maintain the equality expressed in Equation 22 and 
23, a quadratic effect (t22 ¼ −0:2) of the slope growth 
factor (g2

2i) emerges—an effect we do not specify in 
the theoretical model (Figure 1). Like the main effect 
of the slope (bz, g2

) itself, which I showed in 
McCormick et al. (2024) changes linearly across dif
ferent time codings as a function of the main effect of 
the intercept (bz, g1

)

b�z, g2
¼ bz, g2

þ bz, g1
Da, (24) 

the quadratic effect of the slope (tz, g2
2
) changes lin

early as a function of the bilinear interaction effect of 
the intercept and slope (tz, g1g2 ).

t�z, g2
2
¼ tz, g2

2
þ tz, g1g2Da (25) 

This means that unless this additional quadratic 
effect is specified during model estimation, the like
lihood equivalency between the two models is lost, 
and the effect of the bilinear interaction on the dis
tal outcome (t�12) is nonequivalent—and therefore 
biased—in alternative time coding models. In 
Figure 2, I plot the estimates of the latent inter
action effect (t̂z, g1g2 ) from models with the inter
cept coded at t ¼ 1, 2, :::, 5; with the point estimate 
and 95% confidence intervals in comparison with 
the population generating value (tz, g1g2 ¼ 0:05). 
Failing to include the quadratic effect of the slope 
(tz, g2

2
) in these models biases the recovered esti

mates of the bilinear interaction effect downwards 
as we move away from the time coding approach 
where tz, g2

2
¼ 0 (here at t ¼ 1; see the Supplemental 

Material for full results).
These time coding relationships only get more 

complex if we consider the full matrix of interaction 
effect—namely the addition of the quadratic effect of 
the intercept. The time coding effects in Equation 22
and 25 only hold if t11 ¼ 0: Otherwise, the time cod
ing transformations are as follows.

� � ¼ T0�T ¼
1 0 0
a b 0
0 0 0

2

4

3

5
t11 t12 0
0 t22 0
0 0 0

2

4

3

5
1 a 0
0 b 0
0 0 0

2

4

3

5

¼

t11 t11aþ t12b 0
t11a t11a2 þ t12abþ t22b2 0
0 0 0

2

4

3

5

(26) 
2Note that this notation differs slightly from prior work (McCormick et al., 
2024) which simplified zi as an observed outcome. Both approaches give 
the same results; the matrices are only adjusted to maintain 
conformability.
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which simplifies to

� � ¼

t11 t11aþ t12 0
t11a t11a2 þ t12aþ t22 0

0 0 0

2

4

3

5 (27) 

when b ¼ 1:
In this expanded model, t11 is the only truly 

time coding invariant parameter in � (and likewise 
p11 in P and x11 in X if these matrices are 
included). Even more troubling is that when t11 6¼

0; these time coding transformations violate the 
upper-triangular structure of � as originally 
defined, with � �12 ¼ t11a and � �21 ¼ t11aþ t12: Both 
elements imply an effect of the bilinear interaction 
of g1g2 on the distal outcome (z), and when mod
eled with observed data, it should be impossible to 
obtain separate estimates for these parameters. In 
practice, we should expect that the obtained param
eter estimates will combine these two transforma
tions with the following expression.

t�z, g1g2
¼ tz, g1g2 þ 2tz, g2

1
Da (28) 

However, to focus the discussion here on the par
ameter of interest—the bilinear interaction term—in 
subsequent examples, I will consider the case where 
t11 ¼ 0; allowing for simplified transformations for 
the bilinear interaction

t�z, g1g2
¼ tz, g1g2 (29) 

and the quadratic effect of the slope

t�z, g2
2
¼ tz, g2

2
þ tz, g1g2Da (30) 

hold.

Reevaluating LMS versus SAM performance in the 
presence of the quadratic slope effect

I re-ran a subset of the simulations in Section 2.3, 
including a quadratic effect of the slope during model 
estimation. Given the results in Table 2, I only report 
the SAM models with the bootstrap standard errors 
here. Table 3 reports the mean (MEst:; compare to the 
population generating parameter at left) and variabil
ity (SDEst:) of the recovered parameter estimates, as 
well as the average recovered standard error (MS:E:; 
compare to SDEst:). The results were substantively 
similar for the t ¼ 3 and t ¼ 5 conditions, with both 
approaches showing unbiased average parameter esti
mates for the main effect of the intercept (bz, g1

) and 
two interaction terms (tz, g1g2 and tz, g2g2 ); as with the 
bilinear-only model, the recovery of the main effect of 
the slope (bz, g2

) was substantially worse. The LMS 
approach showed smaller standard errors compared 
with the SAM approach.3 ; however, both approaches 
showed worse estimation of the sampling variability 
(captured by the MS:E: column) compared with the 

Figure 2. Latent Interaction Estimates from Mis-Specified Alternative Time Coding Models. When only including the bilinear inter
action effect, altering the time coding scheme results in nonequivalent effect estimates. In particular, as the time coding moves 
away from the scheme in the generating model (here this means forward in the longitudinal design), the bilinear effect is biased 
downwards toward zero.

3As expected in data that conform to joint normality.
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simpler bilinear only model, although still within 6 1 
SD of the sampling variability of recovered mean esti
mates (SDEst: column) for almost all conditions.

Visualizing time coding-dependent latent 
interactions

I noted earlier the inferential advantages of plotting 
and probing these effects, similar to familiar methods 
for evaluating bilinear interactions in observed varia
bles (Aiken & West, 1991). To visualize the latent 
interaction effect across different available time cod
ings, I used the transformation functions outlined 
above to estimate the predicted effect across an arbi
trary number of alternative models. However, visualiz
ing these relationships is not entirely straightforward. 
While each of the latent interactions—the bilinear 
(g1g2) and quadratic slope (g2

2) effects—are two-way 
interaction effects, the pattern of changes in parameter 
estimates across different time codings means that we 
need to adopt techniques common in three-way inter
action effects. Here, I consider two different 
approaches for visualizing the latent interactions 
among growth factors.

Simple slopes

In the latent interaction model, we must contend with 
the fact that we have both time coding and true inter
action effects that need to be probed and plotted. As 
such, while they differ in their estimation, the effects 
here resemble a 3-way interaction in traditional regres
sion contexts. As such, we have several options for plot
ting the resulting effects, depending on which feature 
we wish to highlight. I first use a familiar simple-slopes 
approach (Aiken & West, 1991; Bauer & Curran, 2005; 

Curran et al., 2004), where I plot the expected values of 
the outcome (z) as a function of the latent slope factor 
(g2). Figure 3 displays this approach, where the differ
ent regression lines represent the expected effect of g2 
at different levels of g1: Because we do not directly 
observe the values of the intercept or slope, I instead 
probe this interaction at model-implied levels of the 
intercept (i.e., the mean and 6 1 SD). I then display 
different simple slopes for a subset of time points (t) in 
separate panels (Figure 3). Given the slope’s theoretical 
importance in understanding the consequences of 
change (McCormick et al., 2024), I evaluated the effect 
of g2 at different values of g1 across integer values of t,4

however like observed interactions, the latent inter
action is symmetric and I could equivalently highlight 
the effect of g1 if that was of interest.

Here the presence of the negative quadratic effect 
of the slope becomes more pronounced as we move 
the intercept time point (t) forward in the longitu
dinal design, although the bilinear interaction terms 
maintain a constant positive influence on the main 
effect of the slope. Note that even at t ¼ 1; there is 
some curvature to the simple slopes lines, in contrast 
to the initial models (Table 1), where I did not esti
mate a quadratic slope effect. However, like the aper
ture (Hancock & Choi, 2006; McCormick et al., 2024) 
minimizes the covariance between the slope and inter
cept in the main effects only model, it is possible to 
use the results of any single time coding model to 
estimate a time point where the quadratic effect of the 
slope is zero, and only the bilinear interaction 
remains. Indeed the formula to find this point falls 

Table 3. Model Recovery with a Quadratic Slope Effect (n ¼ 250): LMS and SAM Estimates.
LMS Estimates SAM Estimates (bootstrap S.E.)

n ¼ 250 n ¼ 250

r ¼ 945=1000 r ¼ 1000=1000

MEst: (SDEst:) MS:E: (SDS:E:) MEst: (SDEst:) MS:E: (SDS:E:)

bz, g1
¼ 0:20 t ¼ 3 0.201 (0.052) 0.036 (0.038) 0.204 (0.106) 0.138 (0.070)

t ¼ 5 0.201 (0.037) 0.028 (0.010) 0.203 (0.045) 0.097 (0.093)
bz, g2

¼ 0:10 t ¼ 3 0.122 (0.332) 0.219 (0.204) 0.051 (0.989) 1.14 (0.582)
t ¼ 5 0.103 (0.209) 0.148 (0.047) 0.086 (0.324) 0.880 (0.797)

tz, g1g2
¼ 0:05 t ¼ 3 0.045 (0.113) 0.076 (0.079) 0.057 (0.348) 0.363 (0.175)

t ¼ 5 0.047 (0.071) 0.050 (0.019) 0.051 (0.111) 0.349 (0.316)
tz, g2g2

¼ 0:00 t ¼ 3 0.006 (0.208) 0.140 (0.208) 0.009 (0.624) 0.548 (0.264)
t ¼ 5 0.001 (0.095) 0.073 (0.037) 0.000 (0.139) 0.495 (0.449)

Note: For the sample size n ¼ 250 and number of repeated measures (t, row), the mean effect estimate (MEst:) is shown with the standard deviation of 
effects (SDEst:) in parentheses, followed by the mean (MS:E:) and standard deviation (SDS:E:) of the standard error. The number of replications that con
verged r is indicated for t ¼ 3=t ¼ 5: The results are organized by effect, and organized by the generating values for the main effect of the intercept 
(bz, g1

), main effect of the slope (bz, g2
), bilinear interaction effect (tz, g1g2

), and quadratic effect of the slope (tz, g2g2
) shown in the leftmost column. In 

most instances, the generating value was contained in 6 1 SD of the average recovered effect. Instances where the generating value or the empirical 
SD was not contained in 6 1 SD are bolded.

4Note that integer values are simply a convenient heuristic, but that the 
time coding transformations can be applied across any real value of t. 
Nevertheless, for practical reasons, t should most often be bounded 
between 1 and T.
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directly out of Equation 30 and has a parallel struc
ture to that of the aperture, with the following form

a ¼
−tz, g2

2

tz, g1g2

(31) 

Thus by adjusting each of the factor loadings from 
any estimated solution by substituting this value of a 
(in this simulated example, a ¼ 0:229) into the trans
formation matrix from Equation 14, we can obtain a 
solution where t�z, g2

2
¼ 0; resulting in no curvature to 

the model-implied simple slopes (Figure 4). For the 
simulated example data, this implies and interaction 
aperture 0.229 time units before the first measurement 
occasion. Note that this is not identical to the covari
ance aperture (Hancock & Choi, 2006), which is at 
a ¼ −0:340 in these same data.

Like the covariance aperture, this interaction aper
ture is not constrained to only include values that 

occur within the observed time range. As such, while 
the interaction aperture is an attractive time point to 
estimate the model intercept for theoretical reasons, it 
is likely inadvisable in real data contexts to estimate 
the intercept outside the range of the data in order to 
protect the reliability and validity of model inferences.

Regions of significance

An alternative to the simple slopes approach is to 
adopt a regions of significance plot (i.e., Johnson- 
Neyman plots; Johnson & Neyman, 1936) to help 
characterize how the regression effects of the latent 
interactions on the distal outcome change across alter
native time codings. Similar to the main effect of the 
intercept and slope on the distal outcome in the 
model without latent interactions (see Figure 2; 
McCormick et al., 2024), here there is a clear contrast 

Figure 3. Visualizing the Latent Interaction with Simple Slopes. The model-implied values of the distal outcome (z) are plotted 
against values of the slope (g2i; x-axis) for model-implied values of the intercept (g1i) at the mean and 6 1 standard deviation 
(separate trend lines), across different time coding schemes (separate panels). Note that as the coded intercept moves forward, the 
quadratic slope effect induces additional curvature to the model-implied expected value trend lines. In this example, these simple 
slopes show that the magnitude of the effect of the slope on the distal outcome increases at higher levels of the intercept.

Figure 4. Visualizing the Latent Interaction Aperture using Simple Slopes. By estimating the moderated distal outcome growth 
model at the interaction aperture, we can eliminate the curvature induced by the quadratic slope effect, leaving only the simple 
bilinear interaction effect to interpret.
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of how time coding changes impact the effect of the 
bilinear interaction (tz, g1g2 ) and the quadratic effect of 
the slope factor (tz, g2

2
). In Figure 5, I highlight that 

the point estimate and standard errors for both the 
effect of the bilinear interaction (t̂z, g1g2 ) are time cod
ing invariant (again so long as we include tz, g2

2 
in the 

model—failing to do so will lead to changes in t̂z, g1g2 

due to misspecification; see Figure 2). In contrast, the 
estimated quadratic effect of the slope t̂z, g2

2 
changes 

linearly across different potential intercept time points 
(t), just as expected. Note a key difference in this plot 
from traditional regions of significance plots: the 
standard errors do not show the usual pronounced 
quadratic shape because the transformations are deter
ministic. Similar to prior work (McCormick et al., 
2024), this approach shows the potential for the sign 
and significance of the quadratic effect to depend on 
the time coding scheme adopted (Figure 5).

The regions of significance plot also locates where 
within the time point range the quadratic slope effect 
will be zero (and therefore result in Figure 4), right 
before the start of the study period. It further shows 
that the effect of the bilinear interaction is invariant 
to time coding choices, so long as the quadratic slope 
is included in the model. In the next section, I will 
turn to an empirical example using real sample data 
to highlight how these approaches operate in practice.

Real data example

To highlight the complexities I have outlined above in a 
real-data context, I drew publicly available data from 
the Tennessee’s Student Teacher Achievement Ratio 
(STAR; Word et al., 1990; Achilles et al., 2008, data 
retrieved from https://doi.org/10.7910/DVN/SIWH9F) 

project (n ¼ 772), including a maximum number of 4 
repeated measures per individual (mode ¼ 3) from the 
5th to the 8th grade. I consider here a model where 
growth is estimated on repeated measures of math 
achievement over 4 years with a distal outcome of over
all grades at the end of high school (measured on a 1– 
100 scale; centered prior to analysis). Prior to fitting the 
model, I centered the repeated measures of math 
achievement using the 5th grade mean and divided by 
10 to rescale all variables to aid convergence.

I first fit a distal outcome latent curve model with 
only the bilinear latent interaction effect (i.e., 
Figure 1). To assess the impact of different time cod
ing schemes, I chose two (of a theoretically infinite 
set) standard schemes often deployed in practice: 1) 
an initial status model (i.e., intercept at the first time 
point), and 2) and average status model (i.e., intercept 
at the middle of the trajectory). Comparing these two 
solutions allows us to see both the impact of time 
coding decisions and of the exclusion of the quadratic 
effect in real and incomplete data.

The results of the bilinear-only models are pre
sented in Table 4. While the differences are slight, we 
can see that the initial status model (‘ ¼ −5874:75) 
and average status model (‘ ¼ −5874:79) are not 
likelihood-equivalent, and the effect of the bilinear 
latent interaction is attenuated (tz, g1g2 ¼ 0.642 vs. 
0.718), mirroring the simulated example (Figure 2). I 
then fit the same time coding schemes, but with the 
quadratic interaction of the slope (g2

2) included as an 
additional predictor of the distal outcome (Table 5).

As expected, the key differences are that now the two 
alternative time coding models are likelihood equivalent 
(‘ ¼ −5874:47) and the effect of the latent bilinear inter
action is constant (tz, g1g2 ¼ 1:298 8 a) while the effect 

Figure 5. Visualizing Time Coding Changes in the Latent Interaction using Zones of Significance. Using a zones of significance 
approach, we can visualize the time coding-related changes in the quadratic slope effect tz, g2

2 
as it changes linearly across different 

time coding schemes, going from non-significant to significant (at p < 0:05) when the intercept is placed at or after t ¼ 2:75:
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of the latent quadratic slope changes linearly (initial sta
tus tz, g2g2 ¼ −6:946; average status tz, g2g2 ¼ −8:893; 
Dtz, g2g2 ¼ −1:948 ¼ −1:5 � 1:298). Below, I plot the 
simple slopes and Johnson-Neyman regions of signifi
cance approaches to probing these effects for the distal 

outcome of cumulative high school grades and how they 
interact with the choice of time coding.

As can be seen in Figure 6(B), while the latent 
quadratic slope effect (t̂z, g2

2
) is never significant within 

the range of observation, it is nevertheless quite large 

Table 4. Parameter Recovery: Bilinear Effect Only.
Initial Status Average Status

l BIC l BIC

−5874.75 11842.58 −5874.79 11842.67

Est. S.E. Std. Est. p Est. S.E. Std. Est. p

bz, g1
1.697 1.559 0.938 0.276 1.785 1.463 1.063 0.222

bz, g2
−34.254 11.927 −1.190 0.004 −38.963 10.542 −1.355 < 0.001

tz, g1g2
0.718 0.377 0.096 0.057 0.642 0.355 0.093 0.071

ag1
−1.749 0.193 −0.453 < 0.001 0.522 0.165 0.126 0.002

ag2
1.514 0.066 6.238 < 0.001 1.513 0.066 6.228 < 0.001

w11 14.912 1.538 1� < 0.001 17.302 1.169 1� < 0.001
w21 0.753 0.330 0.023 0.851 0.383 0.026
q21 0.803 0.190 < 0.001 0.842 0.140 < 0.001
w22 0.059 0.041 1� 0.154 0.059 0.040 1� 0.138

Note: ‘ is the log-likelihood. BIC is the Bayesian Information Criterion. Est. is the sample-recovered parameter. S.E. is the 
standard error of the estimate. Std. Est. is the standardized estimate. Beta (b) denotes main effects regression coefficients 
associated with the latent growth factors, upsilon (t) denotes the regression coefficients associated with the latent inter
action, alpha (a) denotes factor means, psi (w) denotes factor variances and covariances, and rho (q) denotes the factor 
correlation. �Denotes a constrained parameter (not estimated).

Figure 6. Time Coding Results for Cumulative High School Grades. While the zones of significance plot (B) highlights that the 
quadratic slope effect is never significant within the range of the repeated measures data, the magnitude of the effect neverthe
less induces considerable curvature into the simple slopes plot (A). The positive bilinear interaction tz, g1g2 

suggests that higher ini
tial math performance (g1) boosts the impact of gains in math performance (bz, g2

) on high school grades (z).
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in terms of effect size. As a result, the model-implied 
simple slopes display a pronounced curvature at all 
the evaluated intercept time points (Figure 6(A)). The 
regions of significance plot (Figure 6(B)) implies that 
the interaction aperture (where tz, g2

2
¼ 0) is located 

sometime prior to the start of the study. Using 
Equation 31, we can see that this is indeed the case; 
the interaction aperture location is estimated as being 
5.351 time units prior to the first observation (� late 
kindergarten). As such, I chose to retain the initial 
status model as the most interpretable solution 
because it is located closest to this aperture while 
remaining within the window of observation.

Substantively, we can interpret the significant bilin
ear interaction (Figure 6(A); left-most panel) as indi
cating a positive synergy between high intercepts and 
slopes such that those with greater starting math 
achievement and show greater gains during middle- 
school have higher predicted cumulative grades in 
high school. Given the magnitude of the quadratic 
latent slope effect, there is at least the suggestion that 
there may be some optimal combination of intercept 
and slope beyond which we see performance reversals, 
however, those results would need to be interpreted 
with extreme caution given the large uncertainty (and 
in the solution I chose to retain, non-significance) 
associated with that quadratic effect.

Recommendations for applied researchers

Adopting a theoretical perspective on using trajecto
ries as a whole, rather than unique effects of the dif
ferent components therein, is an attractive one for 
probing a wide range of phenomena in the behavioral 
and education sciences. Interactions provide a 

powerful lens for understanding how the effect of the 
intercept or slope exists in the context of other fea
tures of the model; for instance, they allow one to dis
tinguish between those who show greater education 
gains from relatively low versus high baseline ability. 
However, the complexity of time coding effects, 
already challenging for interpretation when only using 
main effects (McCormick et al., 2024) are, perhaps 
unsurprisingly, magnified further with the introduc
tion of latent interactions.

The primary issues arose from the appearance of 
latent quadratic effects of the slope and the intercept 
(in the full solution) across different time coding solu
tions. Because these effects are not a standard feature 
of the theoretical model for understanding joint 
impacts of individual differences in the trajectory 
components, applied researchers may unknowingly 
fail to include these effects, leaving themselves open 
to nonequivalent solutions depending on the inference 
decisions about the intercept that may change across 
applications (e.g., initial vs. average vs. final status). 
When possible, researchers may choose to estimate 
these models at the intercept aperture to maximize 
the interpretability of the bilinear interaction, but as 
we saw with the applied example, this is not always 
feasible. The plotting and probing approaches I dem
onstrated here (Figures 3–5) can aid in the interpret
ation of results in much the same ways as are often 
used in observed variable interactions.

One natural question that may arise is whether 
applied researchers can simply ignore these problem
atic quadratic effects because while this may result in 
a mis-specified model, all models are likely mis- 
specified to some degree in real data. This question 
may seem initially reasonable given the complexity of 

Table 5. Parameter Recovery: Bilinear and Quadratic Effects.
Initial Status Average Status

l BIC l BIC

−5874.47 11848.66 −5874.47 11848.66

Est. S.E. Std. Est. p Est. S.E. Std. Est. p

bz, g1
−0.997 0.685 −0.575 0.145 −0.997 0.685 −0.605 0.145

bz, g2
20.887 13.778 1.306 0.130 22.380 14.616 1.400 0.126

tz, g1g2
1.298 0.430 0.322 0.003 1.299 0.430 0.339 0.003

tz, g2g2
−6.946 4.435 −0.187 0.117 −8.893 4.968 −0.239 0.073

ag1
−1.753 0.192 −0.442 < 0.001 0.518 0.164 0.124 0.002

ag2
1.514 0.065 3.520 < 0.001 1.514 0.065 3.520 < 0.001

w11 15.736 1.419 1� < 0.001 17.406 1.175 1� < 0.001
w21 0.418 0.282 0.139 0.695 0.342 0.042
q21 0.245 0.183 0.180 0.387 0.157 0.014
w22 0.185 0.116 1� 0.111 0.185 0.116 1� 0.111

Note: ‘ is the log-likelihood. BIC is the Bayesian Information Criterion. Est. is the sample-recovered parameter. S.E. is the 
standard error of the estimate. Std. Est. is the standardized estimate. Beta (b) denotes main effects regression coefficients 
associated with the latent growth factors, upsilon (t) denotes the regression coefficients associated with the latent inter
action, alpha (a) denotes factor means, psi (w) denotes factor variances and covariances, and rho (q) denotes the factor 
correlation. �Denotes a constrained parameter (not estimated).
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interpreting multiple latent interactions and the com
putational demands of estimating these features; how
ever, Figure 2 and the results of the real data analysis 
(Table 4) suggest that this simplification approach 
impairs the ability to detect the bilinear interaction 
effect of interest—resulting in deflated effect sizes. 
Specifically, the larger the latent quadratic slope effect 
would be if included, the more deflated the estimates 
of the bilinear interaction are in models that omit that 
quadratic effect.

The challenges of estimation here may be addressed 
by adopting the Structural After Measurement (SAM; 
Rosseel & Loh, 2024) approach, which does not require 
estimating the complicated mixture components needed 
in LMS. As such, the SAM approach can accommodate 
a greater number of interactions without convergence 
issues. One current limitation of the SAM approach; 
however, is that reliable standard error estimates have 
not yet been derived. As such, researchers interested in 
employing the SAM approach should manually boot
strap the standard errors directly through resampling 
their target data, rather than through the internal lav
aan bootstrapping procedure—although this may 
change in future versions. The SAM approach with 
bootstrap standard errors is also more robust to distri
butional misspecification of the latent variables (see 
marginal Gumbel simulations in the Supplemental 
Material). Nevertheless, for a minimal number of latent 
interactions and latent variables that conform to the 
Gaussian assumptions, the LMS approach returns 
smaller standard errors (i.e., greater efficiency).

Conclusions

My goal here was to explore the utility and challenges 
of using latent interactions to test the impact of the tra
jectory as a whole on distal outcomes rather than the 
unique effects of its constituent features (e.g., intercept 
and slope separately). For estimating joint effects in 
continuous predictors, I turned to methods for estimat
ing latent interactions between the growth factors, with 
a core theoretical focus on the bilinear interaction 
between intercept and slope. Based on prior work 
(Biesanz et al., 2004; McCormick et al., 2024) highlight
ing the importance of considering time coding decisions 
for these models, I explored how these decisions would 
impact estimation and interpretation of effects in a 
moderated distal outcome latent curve model. I laid out 
derivations for estimating changes in model parameters 
across alternative time coding schemes and confirmed 
them in artificial and real data. These derivations 
revealed a concerning pattern of effects. While the 

primary effect of interest in these models is the bilinear 
interaction, Equation 22 and 26 demonstrate how latent 
quadratic effects appear even when not specified in the 
data generating model, and when omitted from the 
model, result in bias in the bilinear interaction effect 
estimate. I showed how specifying at least the latent 
quadratic effect of the slope allowed me to obtain a 
time-coding invariant bilinear interaction effect and 
developed plotting and probing techniques for under
standing how these latent interactions impact the distal 
outcome.

To further develop this initial work, there is a 
broad scope for additional methodological develop
ments and investigations, including both for moder
ated distal outcome growth models in particular, as 
well as models with latent interactions more broadly. 
First, to maintain the focus of the current work on 
deriving and probing the time coding transformations 
for the latent interaction(s), the set of simulation con
ditions was constrained to a small set of population 
models and conditions. Future work should seek to 
expand on these initial simulations to more fully map 
the robustness of the models for capturing latent 
interactions among the latent growth factors, includ
ing refining estimates of power across a broader range 
of sample sizes and number of time points, investigat
ing the role of missing data, and for more complex 
nonlinear growth trajectories. For latent interaction 
models more generally, substantial work remains to 
maximize the utility of these approaches, including 
derivations of valid standard errors for the two-step 
Structural After Measurement (SAM) product esti
mates, investigations into robustness of methods with 
and without distributional assumptions (e.g., LMS vs. 
SAM) in truly nonlinear data (note that the simula
tions in the Supplemental Material only rely on mar
ginal nonlinearity, but many more-complex nonlinear 
patterns are possible; see Fairchild et al. (2024); 
Foldnes and Grønneberg (2019, 2022); Grønneberg 
et al. (2022), for examples).

Finally, the central question of how to use trajecto
ries jointly as predictors of downstream outcomes 
remains a fertile area of continued research. While the 
continuous nature of the bilinear interaction is an 
attractive one for understanding the context of inter
cept and slope, these questions could be recast in 
terms of a discrete set of “kinds” of different trajecto
ries. This recasting would lend itself naturally to the 
estimation of latent classes of trajectories using latent 
class (e.g., Muth�en & Muth�en, 2000; Nagin, 1999) 
models which have distinct combinations of growth 
features. These latent class growth models have faced 
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general critiques in the past as prone to extract stereo
typical or spurious classes of growth (e.g., always 
high/low stable, increasing, and decreasing classes; 
Sher et al., 2011), and these issues likely would remain 
in the kinds of models considered here. Nevertheless, 
as a method for estimating areas of high local density 
in multivariate space, these latent class approaches 
may help researchers gain better leverage in interpret
ing the consequences of trajectories as a whole for 
later developmental outcomes. One pressing question 
that should be addressed before adopting these 
approaches more broadly is the sensitivity of class size 
and composition to choices of time coding. If latent 
class solutions are robust to time coding in a way that 
continuous latent interactions are not, this may 
increase the attractiveness of these discrete latent vari
able approaches in distal outcome growth models. 
However, if features of latent class growth models 
(e.g., class enumeration or assignment)depend on time 
coding choices, then the added complexity of mixture 
distributions may serve to obscure rather than clarify 
our understanding of the downstream consequences 
of change over time.
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Appendix I. Time coding transformations with 
latent interactions

Parameter estimate transformations

Prior work (Biesanz et al., 2004) defined a transformation 
matrix to compute the results for an alternative coding 
scheme of time such that

T−1 ¼ K�
0

K�ð Þ
−1

K�
0

K (A1.1) 

Taking advantage of the likelihood equivalence between 
different time coding solutions, Biesanz et al. (2004) further 
showed that because

K�W�K� ¼ KWK and K�a� ¼ Ka (A1.2) 

then

W� ¼ T−1WT−10 and a� ¼ T−1a (A1.3) 

We also outlined in McCormick et al. (2024) that a simi
lar approach can be used to show that for the matrix B of 
distal outcome regressions

K�W�B� ¼ KWB (A1.4) 

such that

B� ¼ T0B (A1.5) 

Because the repeated measures yti are only connected to 
the distal outcome(s) zpi only through the latent factor 
structure, we derive the time coding-dependent parameter 
estimate changes straightforwardly. Consider the covariance 
between yti and zpi in a model with latent endogenous 
interactions

Ryz ¼ E yz½ � ¼ E Kgþ ey
� �

g0Bþ g0�gþ ez
� �h i

¼ E Kgþ ey
� �

g0Bþ g0� aþ fð Þ þ ez
� �h i

¼ Kgð Þ g0Bþ g0�a
� �

¼ KWBþ KW�a

¼ KW Bþ �að Þ

(A1.6) 

So alternative time coding models must satisfy the 
equality

K�W� B� þ � �a�ð Þ ¼ KW Bþ �að Þ (A1.7) 

allowing us to solve for � � using Equation A1.3 and A1.5, 
detailed below

KTð Þ T−1WT−10ð Þ T0B½ � þ � � T−1a½ �
� �

¼ KW Bþ �að Þ

KWBþ KWT−10� �T−1a ¼ KWBþ KW�a

KWT−10� �T−1a ¼ KW�a

T−10� �T−1 ¼ �

(A1.8) 

which results in

� � ¼ T0�T (A1.9) 

Using this transformation also allows us to obtain the 
scalar equations for each individual parameter, recapitulat-
ing Equation 26

� � ¼ T0�T ¼
1 0 0
a b 0
0 0 0

2

4

3

5
t11 t12 0
0 t22 0
0 0 0

2

4

3

5
1 a 0
0 b 0
0 0 0

2

4

3

5

¼

t11 t11aþ t12b 0
t11a t11a2 þ t12abþ t22b2 0
0 0 0

2

4

3

5

(A1.10) 

which we can simplify in various ways (e.g., when b ¼ 1 
and/or t11 ¼ 0).
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Standard error transformations

The standard errors of the transformed results can also be 
straightforwardly obtained. Prior work (Biesanz et al., 2004; 
Curran et al., 2004; McCormick et al., 2024) outlined how 
to obtain the Jacobian matrix of partial derivatives for the 
covariance matrix of the latent factors

JvecðWÞ!vecðW�Þ ¼
dvecðW�Þ
dvecðWÞ

� �0

¼
dðT−1 � T−1ÞvecðWÞ

dvecðWÞ

" #0

¼ ðT−1 � T−1Þ
0

(A1.11) 

and the matrix of distal outcome regressions

JvecðBÞ!vecðB�Þ ¼
dvecðB�Þ
dvecðBÞ

� �0

¼
dvecðT0BÞ
dvecðBÞ

" #0

¼ T0½ �0

¼ T

(A1.12) 

such that

ACOVðW�Þ ¼ J0vecðWÞ!vecðW�ÞACOVðWÞJvecðWÞ!vecðW�Þ

(A1.13) 

and

ACOVðB�Þ ¼ J0vecðBÞ!vecðB�ÞACOVðBÞJvecðBÞ!vecðB�Þ

¼ T0ACOVðBÞT
(A1.14) 

Applying the same procedure to the matrix of interaction 
effects � ; we can see that

Jvecð� Þ!vecð� �Þ ¼
dvecð� �Þ
dvecð� Þ

h i0

¼
dðT�TÞvecð� Þ

dvecð� Þ

h i0

¼ ðT� TÞ0
(A1.15) 

such that

ACOVð� �Þ ¼ J0vecð� Þ!vecð� �ÞACOVð� ÞJvecð� Þ!vecð� �Þ

(A1.16) 
With standard errors being obtained by taking the square 

root of the diagonal of the resulting matrix ACOVð� �Þ:

Appendix II. Expanded transformations in 
nonlinear models and models with multiple 
distal outcomes

For simplicity, the main results—as in McCormick et al. 
(2024)—consider the case of the linear growth model with a 
single distal outcome. However, the matrix expressions 
derived in this treatment generalize readily to contexts of 
nonlinear polynomial growth models, and to models with 

more than a single distal outcome. Below, I outline how 
these transformations follow the same expressions as before.

Time coding derivations in the quadratic growth 
model

In the quadratic model, the factor loading matrix K is 
expanded to contain squared factor loadings. For instance, 
the quadratic version of Equation 3 would be

Kquad ¼

1 0 0 0
1 1 1 0
1 2 4 0
1 3 9 0
1 4 16 0
0 0 0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(A2.1) 

with a matrix of distal outcome regressions B from 
Equation 4 as

Bquad ¼

0 0 0 0
0 0 0 0

bz1, g1
bz1, g2

bz1, g3
0

2

6
4

3

7
5 (A2.2) 

To accomplish time coding transformations in expanded 
polynomial models, we can also expand the transformation 
matrix T to include an additional column. This would have 
the form

Tquad ¼

1 a a2 0
0 b 2ab 0
0 0 b2 0
0 0 0 1

2

6
6
4

3

7
7
5 (A2.3) 

with a quadratic expression of the a and b shift and scaling 
parameters in the quadratic column. However, deriving 
these elements individually is not necessary, as they can be 
computed directly from the expression in Equation A1.1, 
which only requires that we know the factor loading matrix 
of the original (K) and target (K�) model. Once we have 
this transformation matrix T; all of the same transformation 
expressions from Appendix I hold. Indeed this is the true 
advantage of adopting matrix, rather than scalar, expres-
sions for these transformations. A demonstration of these 
expressions can be seen in the Supplemental Material.

Time coding derivations with multiple distal 
outcomes

Expanding the model to include multiple distal outcomes 
into the model involves similarly straightforward expansions 
of the W and B matrices. The resulting equations expand 
on Equations 3 and 4, with additional rows and columns 
for a second distal outcome, including in the measurement

y1i
y2i
y3i
y4i
y5i
z1i
z2i

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼

1 0 0 0
1 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
0 0 1 0
0 0 0 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

g1i
g2i
gz1i
gz2i

2

6
6
4

3

7
7
5þ

e1i
e2i
e3i
e4i
e5i
ez1i
ez2i

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

(A2.4) 
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and structural

g1i
g2i
gz1i
gz2i

2

6
6
4

3

7
7
5 ¼

a1
a2
az1

az2

2

6
6
4

3

7
7
5þ

0 0 0 0
0 0 0 0

bz1, g1
bz1, g2

0 0
bz2, g1

bz2, g2
0 0

2

6
6
6
4

3

7
7
7
5

g1i
g2i
gz1i
gz2i

2

6
6
4

3

7
7
5þ

f1i
f2i
fz1i
fz2i

2

6
6
4

3

7
7
5

(A2.5) 

model. The covariance matrix W also expands, maintaining the 
block structure of covariances for the latent growth factors and 
distal outcome single-indicator factors (these cross-block 
covariance relationships are structured as regressions in B).

W ¼

w11 w12 0 0
w21 w22 0 0
0 0 wz1

w34
0 0 w43 wz2

2

6
6
4

3

7
7
5 (A2.6) 

The time coding transformation matrix T expands as 
well but changes little in terms of substantive structure

T ¼

1 a 0 0
0 b ¼ 1 0 0
0 0 1 0
0 0 0 1

2

6
6
4

3

7
7
5 (A2.7) 

Once we have these expanded matrices, all the same 
matrix expressions as before yield the correct time coding 
transformations across alternative placements of the 
intercept.
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