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ABSTRACT

There has been a growing interest in using earlier change to predict downstream distal out-
comes in development; however, prior work has mostly focused on estimating the unique
effect of the different growth parameters (e.g., intercept and slope) rather than focusing on
the trajectory as a whole. Here | lay out a distal outcome latent curve model with latent
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interactions which attempts to model the joint effect of growth parameters on these later
outcomes. | show again that these models require us to contend with unintuitive time cod-
ing effects which can impact the direction and significance of effects and that plotting and
probing are necessary for disambiguating these joint effects. These graphical approaches
emphasize practical steps for applied researchers in understanding these effects. | then out-
line how future research can help clarify optimal approaches for using the trajectory as a
whole rather than the unique effects of its individual sub-components.

Introduction

The latent curve model (LCM) is a flexible framework
for modeling individual differences in change over time
(Bollen & Curran, 2006; Grimm et al., 2016; Meredith
& Tisak, 1990), and incorporating the effect of time-
invariant and time-varying predictors (Biesanz et al,
2004; Curran et al., 2004; McCormick et al., 2023;
McNeish & Matta, 2020). In developmental and clinical
applications, however, researchers are often interested
in not only the course and causes of change, but also
the consequences for later distal outcomes (Curran et al.,
2010). This latter extension of the latent curve model
has received less attention (but see Muthén and Curran
(1997); Seltzer et al. (1997); von Soest and Hagtvet
(2011)) and involves the use of the growth process itself
to predict distal outcomes (i.e., the consequences of
developmental change). In recent work (McCormick
et al., 2024), we formally laid out the model for a latent
curve model with distal outcomes, investigated the role
of time coding for the parameters of the model, and
proposed methods for optimally estimating the distal
outcome predictive relationships (Feng & Hancock,
2022; Hancock & Choi, 2006). Here, I expand this
approach to consider the joint effect of the growth

factors via latent moderation within the distal outcome
LCM framework and explore how it can help bridge a
conceptual divide between a holistic characterization of
change over time and the downstream consequences of
development.

Our prior work focused on models with additive
effects of the growth factors on distal outcomes, with
our primary concern being obtaining maximally inter-
pretable unique estimates of each factor controlling
for the other (McCormick et al., 2024). This additive
specification is straightforward and familiar from
regression contexts, but can be conceptually limiting
when the substantive focus is on overall patterns of
change rather than the unique contribution of each
factor. That is, while we can obtain unique parameter
estimates to characterize each growth factor and its
respective effects, they fundamentally measure differ-
ent aspects of the same thing: the holistic trajectory of
developmental change. Below, I contrast this main
effects approach with another factor model context
where we might wish to predict some distal outcome
to make this point more clearly.

Consider a longitudinal study of the effects of ado-
lescent anxiety and depression on substance use dur-
ing adulthood. While we would similarly regress
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substance use on the two (likely correlated) factors,
fundamentally, the two latent factors are defined by
different items and measurement structures. By con-
trast, we estimate both intercepts and slopes from the
same set of items in the growth model (albeit with
strictly defined rather than estimated factor loadings),
and both factors jointly characterize an individual’s
trajectory over time. In this light, obtaining unique
effects on a distal outcome seems a poor conceptual
fit to the idea of using individual differences in
growth as a whole to predict downstream consequen-
ces. Unique effects are also limited if we expect theor-
etical differences in the effect of increases or decreases
in some behavior based on its initial or average level.
For instance, the consequences of adolescence-specific
increases in antisocial behavior very likely differ for
teens starting with low baseline levels compared with
teens already showing heightened negative behaviors.
In each of these cases in particular, a holistic under-
standing of change is necessary to contextualize the
distal outcome relationship.

One potential alternative for capturing such joint
patterns is the growth mixture or latent class approach
(Bauer & Reyes, 2010; Jung & Wickrama, 2008;
Muthén & Muthén, 2000; Nagin, 1999), which posits
latent subgroups with qualitatively-distinct overall pat-
terns of change. These subgroups are often named
based on joint trajectory information, with common
examples being “high-stable” or “low-increasing” (Sher
et al., 2011). Latent class models have well-developed
techniques for predicting outcomes from using class
membership (e.g., Li et al., 2001; Nylund-Gibson et al.,
2019), and are attractive when qualitatively different
“kinds” of trajectories are expected (Bauer & Curran,
2003; Bauer & Reyes, 2010). However, these models
also present several challenges, including returning
inappropriate group solutions (Bauer, 2007; Bauer &
Curran, 2003; Hipp & Bauer, 2006; Sher et al., 2011),
difficulties in class enumeration (Kim, 2014; Nylund
et al., 2007), and a propensity to discretize continuous
heterogeneity in growth (e.g., returning stacked “high”,
“medium”, and “low” classes).

In cases of continuous heterogeneity, a continuous
bilinear interaction has an attractive theoretical match to
the idea of joint prediction of the distal outcome from
the trajectory of change as a whole without assuming
discrete classes. Namely, capturing how the effect of one
feature of the trajectory (e.g., the slope) varies as a func-
tion of another (e.g., the intercept). To model all these
effects, I lay out a moderated distal outcome latent curve
model where the joint effect of the growth factors is
used as an additional predictor in an attempt to bring

greater conceptual clarity between prior growth and
downstream consequences. I consider two potential
approaches to estimating latent interactions and contrast
their performance in a series of targeted simulations to
assess the feasibility of estimating these latent moderation
models. Next, given the inferential challenges associated
with time coding decisions in the main effects model
(McCormick et al.,, 2024), T also evaluate the potential
estimation and inferential challenges in this expanded
model related to intercept placement. As expected, the
attendant complications are expanded in the moderated
distal outcome LCM, and so I extend a set of tools used
to evaluate moderation effects graphically and demon-
strate a method for obtaining maximally interpretable
joint effects. I conclude with a demonstration of these
principles in real data and a set of recommendations for
researchers in applied settings.

Latent interactions

Interactions are a key component in the application of
the multiple regression model (Aiken & West, 1991),
and have been used extensively to assess how the
effect of a target predictor changes across levels of
another predictor (or set of predictors in high-order
interactions). In the context of latent curve models,
there has been extensive development of methods for
probing and plotting interactions that arise as a func-
tion of conditioning the growth factors on a set of
predictors (Curran et al., 2004; Preacher et al., 2006).
Interactions also arise in structural equation models
more broadly in multiple-groups models (Joreskog,
1971; Sorbom, 1974) and their generalization in mod-
erated nonlinear factor models (Bauer, 2017; Bauer &
Hussong, 2009). However, these interactions differ in
one fundamental point from those we might consider
here in that they involve at least one observed variable
as a constituent of the product term. By contrast, we
are interested in estimating the interaction effect of
two unobserved latent factors. While many of the
principles of specifying, probing, and plotting these
latent interactions remain familiar from their observed
variable counterparts, there are additional estimation
challenges we need to take into consideration. Below,
I begin by specifying the latent interaction growth
model with distal outcomes, and then consider two
alternative approaches for estimating this model.

Latent interaction growth models with distal
outcomes

We can specify the latent interaction model (Figure 1)
by expanding the main effects model I outlined in
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Figure 1. Latent Interaction Model. The distal outcome (zy;; specified by a single-indicator factor 1, ;) is modeled as a function of
the intercept (17;;) and slope (y,;) of the growth process of the observed repeated measures (y;), as well as their bilinear inter-
action (13,1 small black circle with arrows extending from both factors). Factor loadings for y;; are summarized as 1’s for the
intercept and linearly increasing values of time (t) centered through some shift value (a).

McCormick et al. (2024). I briefly recapitulate the
general LCM with distal outcomes structure here and
then move on to incorporate the latent interaction.
For a vector of repeatedly-assessed outcome variables
y; for individual i =1,2,..,N at time t=1,2,.., T,
we can define a latent growth process with the meas-
urement structure

Yy, =An, + & (1)

with A as a T x K matrix of factor loadings of the
intercept (A,; =1V t) and powered values of time
(t) for k=1,2,...,K latent growth factors, n; as a K-
length vector of latent factors, and g as a T-length
vector of time-specific residuals of y;, which are dis-
tributed as & ~ MVN(0,0). The structural model
inter-relating the growth factors and distal outcome(s)
is defined as

N, =o+Bn+¢ (2)

where the K-length vector 1; is defined by a K-length
vector of factor intercepts (o) and a K-length vector of
factor disturbances ({;) which are distributed as ; ~
MVN(0,%¥), and are inter-related with B, a lower-
triangular K x K matrix of regression coefficients. For
the inclusion of the distal outcomes into the model, we
can expand the K-length vector 1, to include additional
factors in the structural model n, ; which are related to
the P-length vector of observed distal outcomes
through an indicator factor approach (4, , =1) or
for multiple-indicator latent factors through a more-
conventional measurement structure. As an example,
we can consider a linear latent growth curve model
defined by 5 repeated measures with a single distal out-
come and expand our matrix expressions in Equation 1
and 2 to define the measurement model as

)’11‘ 1 0 0 &1i
V2i 1 1 0 'y &2
i 1 2 0 ! &34
ﬁl =11 3 o My | + ng (3)
Vs 1 4 of LM s,
1 1
21i 0 0 1 Ez1i

with covariance matrix @ for g;. Note that y; and z;
appear in the same outcome vector but are related by
the factor loadings to distinct factors—r; (the inter-
cept) and #,; (the slope) for y;, and n,; for the distal
outcome (zp;). At the structural level, we can partition
the relationships between the factors in n; by specify-
ing unique covariance blocks among the growth fac-
tors and distal outcome factors separately in ¥, and
structuring the relationships between the growth fac-
tors and distal outcome factors as regressions in B.
The expanded structural model would be

M o1 0 0 0 My (yi
Mmi | =[x |+ 0 0 0 M | + | G
17211' Uz ﬁzl,nl ﬁzl,nz 0 nzli Czli
(4)
with a covariance matrix of ¥ with the form
Y Y O
Y= lﬁZI sz 0 (5)
0 0 .

with zeros on the block off-diagonals to avoid redun-
dancy with the regression coefficients in B. The
model-implied moment structure—mean p(0) and
covariance matrix X(0)—can then be expressed using
standard notation (e.g., Bollen, 1989) as

n(0) = Aa

, (6)
£(0)=AI1-B)'¥(I-B)"A'+0



4 (&) E M. MCCORMICK

With this foundation in place, we can then con-
sider a model which expands these expressions to
include a bilinear interaction between the intercept
and slope growth factors as an additional predictor of
the distal outcome. Here we expand Equation 2 to
include the latent interaction as

N, =o+ By, + DﬂﬁTﬂi +& (7)

where Y1lis a K x K upper-triangular matrix of regres-
sion coefficients associated with latent interactions
among endogenous latent variables (n;), with quad-
ratic effects on the diagonal (e.g., #3;), and bilinear
effects on the off-diagonal (e.g., 17;;,;)- In the example
distal outcome growth model above, this would take
the form

0 D12 0
T=10 0 0 (8)
0 0 O
to indicate the bilinear effect of #,; and #,; (v12). The
K x 1 indicator matrix D controls the target of the
latent interaction(s) for a given element in m,. For
example

0
D=0 9)
1

indicates that vy, targets the distal outcome factor
(11,,))- In the model we have outlined thus far, we only
need a single Yipand D matrix to model the joint
effect of the latent growth factors on the one distal
outcome; however, for additional distal outcomes (or
generally additional interaction effects on any other
factors), we would need to specify a series of Ymatri-
ces targeting different variables in m;. For P inter-
action targets, Equation 7 takes a more general
notation of

P
n; = o+ By, + Z D, (nXpm;) +¢; (10)
p=1

Note that in Equation 10 we only model the effects
of interactions—including the possibility of quadratic
effects—between endogenous latent variables, however,
we could also use a similar formulation to model
interactions between exogenous latent variables (§;)
with a set of K x K upper-triangular matrices €2
(Kelava et al, 2011), and between endogenous and
exogenous latent variables with a set of K x K upper-
triangular matrices Il (Jin et al., 2021). Each p inter-
action target is modeled with a unique set of matrices
D, T, Il, and © with the relevant interaction effects
for that outcome target.

P

n;, =o+ By, + Z D, (ﬂ;Tp'li + &1L, + %ﬁﬂpﬁi)
p=1

+&;
(11)

While alternative formulations for latent interac-
tions exist (see Jin et al., 2021), this relatively simple
additive form will be useful for clarifying the deriva-
tions of time coding effect that I outline in the follow-
ing section.

By conventions of model path diagrams, we can
visualize the latent interaction as a small, solid circle
with arrows pointing to it from the constituent
growth factors (Figure 1). We can then represent the
effect of the latent interaction on the distal outcome
(vz,y,+n,) with an additional regression arrow. This
bilinear effect of #,;17,; then represents the change in
the main effect of one factor per unit change in the
other. Because of the primary theoretical interest in
the predictive effect of the slope on the distal out-
come, I will interpret this bilinear effect primarily as a
measure of how the predictive effect of the slope fac-
tor changes at different levels of the intercept factor
(although the interaction is of course symmetric).
While here I present the simple linear growth model
with a single distal outcome, this model could be
straightforwardly expanded to include nonlinear
growth factors and multiple distal outcomes using
Equation 10 and 11 (see Appendix for an expanded
explication in these expanded models).

Estimation approaches

There have been a variety of approaches proposed for
estimating latent interaction historically including prod-
uct indicators (Foldnes & Hagtvet, 2014; Kenny &
Judd, 1984), latent moderated structural equations
(LMS; Klein & Moosbrugger, 2000; Moosbrugger et al.,
2009), and two-step Structural After Measurement
(SAM; Li et al., 2000; Rosseel & Loh, 2024) approaches.
Neither the LMS nor the SAM approach require
observed product indicators, which is especially useful
in the growth context, where we do not have distinct
sets of indicators to create products from—rather, the
interaction needs to be estimated directly out of the
latent variables defined by a single set of indicators. The
LMS approach is derived under the assumption of joint
multivariate normality of all latent variables and resid-
uals, and models the non-normality inherent in an
interaction term through a finite Gaussian mixture
approximation (for technical details, see Klein &
Moosbrugger, 2000), while the SAM approach generates



corrected factor scores in a first measurement estima-
tion step, and creates an observed product interaction
in the second structural model estimation step (Rosseel
& Loh, 2024). One limitation of both the LMS and
SAM approaches is the lack of standard fit indices to
evaluate the model. The standard saturated model is
not an appropriate baseline for the nonlinear factor
model using the LMS approach (Kelava et al, 2011);
thus, proper x*> goodness-of-fit tests cannot be per-
formed, and all associated fit indices (e.g., CFI, TLI,
RMSEA, etc.) are unreliable. Likewise, the second-step
SAM model is often just-identified with no parameter
constraints, and also limits fit-based evaluations of the
predictions of the distal outcome. As such, here I will
primarily focus on parameter recovery, and will rely on
the Bayesian Information Criteria (BIC) when model
comparisons are necessary.

Because the LMS approach relies on joint multi-
variate normality, it is sensitive to the distributional
specification of the latent variables in particular (Klein
& Moosbrugger, 2000; Lonati et al., 2025), and multi-
variate tests of the observed indicators and Hausman
tests of the latent variables are recommended in prac-
tice (Lonati et al., 2025) to ensure conformation to
these assumptions. The SAM approach, by contrast,
avoids these distributional assumptions through the
use of observed scores to create the product term. To
focus this investigation on the conceptual use-case of
latent interactions for predicting distal outcomes from
the trajectory as a whole and potential issues of time
coding, the main simulations here conform to the
LMS assumption of joint normality. A set of simula-
tions on the recovery of the LMS and SAM on data
generated with (weakly) non-normal latent variables
(marginally distributed as Gumbel variates) are pre-
sented in the Supplemental Material. As expected, the
LMS results are compromised under these data condi-
tions, especially with respect to the standard error
estimates.

Table 1. Parameter Recovery: LMS and SAM Estimates.

MULTIVARIATE BEHAVIORAL RESEARCH 5

Evaluating LMS versus SAM performance

To evaluate whether the two estimation approaches
appropriately capture the interaction effect of the
growth factors on the distal outcomes as expected, I

simulated data from the following population
moments,
1 0.15 0
a=[3 02] Y,,=1015 1 0
0 0 1
0 0 0 0 005 0
B=|0 0 0 YT=|0 0 01,
02 01 O 0 0 0

and fit the resulting data with both the one-step LMS
(Moosbrugger et al, 2009), and the two-step
Structural After Measurement (SAM; Rosseel & Loh,
2024) approach using the specified bilinear interaction
LCM with distal outcomes. For all models, I estimated
the intercept at the first repeated measure (4, = 0).
To systematically evaluate the recovery of the latent
interaction effects under various conditions, I simu-
lated data while varying the following design factors:
the sample size n € {100,250,500}, and the number
of repeated measures observations t € {3,5} to define
the growth factors. For each of 1000 simulated data
sets, I fit the model in three ways: 1) the latent mod-
erated structural equation (LMS) approach in Mplus,
2) the Structural After Measurement (SAM) approach
with naive standard errors in lavaan, and 3) the
SAM approach with bootstrapped standard errors
(1000 bootstrap samples). The results for parameter
recovery can be seen in Table 1, and the results for
standard error recovery can be seen in Table 2 (all
code required to replicate these results is available in
the Supplemental Material).

The recovery of parameter estimates for the target
distal outcome regression was similar for both the
LMS and SAM approaches in terms of the average

LMS Estimates

SAM Estimates

n =100 n =250 n =500 n =100 n =250 n =500
r = 854/997 r = 976,/1000 r =997,/1000 r = 1000/1000 r = 1000/1000 r =1000/1000
By, = 0.20 t=3 0.198 (0.081) 0.204 (0.058) 0.202 (0.036) 0.194 (0.125) 0.194 (0.088) 0.199 (0.050)
t=5 0.204 (0.063) 0.200 (0.036) 0.201 (0.026) 0.205 (0.075) 0.201 (0.039) 0.201 (0.027)
/izl,h =0.10 t=3 0.136 (0.480) 0.124 (0.235) 0.113 (0.172) 0.127 (1.28) 0.042 (0.870) 0.097 (0.436)
t=5 0.083 (0.317) 0.092 (0.182) 0.096 (0.148) 0.096 (0.509) 0.102 (0.270) 0.091 (0.186)
Vz, i, = 0.05 t=3 0.042 (0.129) 0.036 (0.061) 0.045 (0.048) 0.035 (0.466) 0.072 (0.313) 0.050 (0.142)
t=>5 0.050 (0.091) 0.051 (0.061) 0.050 (0.043) 0.052 (0.157) 0.051 (0.085) 0.052 (0.059)

Note: For each sample size (n, column) and number of repeated measures (t, row), the mean effect estimate is shown with the standard deviation of
effects in parentheses. The number of replications that converged r is indicated for t = 3/t = 5. The generating values for the main effect of the inter-
cept (ﬁz,m ), main effect of the slope (/32,,72), and bilinear interaction effect (v,,,,,,) are shown in the leftmost column. There were no instances where the
generating value was not contained in = 1 SD of the average recovered effect. Monte Carlo standard errors were small (Mycse = 0.0065; range =

0.0008 — 0.0405) across effects.
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Table 2. Standard Error Recovery: LMS and SAM Estimates.

LMS Estimates

SAM Estimates

SDempirical SE 5Demp/'r/'ca/ S'E'naive S~E~boutstrap
BZ,W n =100 t=3 0.081 0.057 (0.108) 0.125 0.028 (0.014) 0.135 (0.065)
=5 0.063 0.044 (0.022) 0.075 0.029 (0.009) 0.124 (0.097)
n =250 t=3 0.058 0.043 (0.059) 0.088 0.019 (0.008) 0.165 (0.102)
=5 0.036 0.027 (0.010) 0.039 0.018 (0.003) 0.044 (0.034)
n =500 t=3 0.036 0.026 (0.017) 0.050 0.013 (0.004) 0.179 (0.128)
=5 0.026 0.019 (0.004) 0.027 0.013 (0.001) 0.022 (0.006)
/31,,12 n =100 t= 0.480 0.300 (0.395) 1.28 0.182 (0.193) 1.06 (0.482)
t= 0.317 0.214 (0.092) 0.509 0.177 (0.068) 0.981 (0.760)
n =250 t= 0.235 0.192 (0.150) 0.870 0.118 (0.132) 1.39 (0.752)
t= 0.182 0.136 (0.034) 0.270 0.108 (0.025) 0.333 (0.343)
n =500 t= 0.172 0.134 (0.064) 0.436 0.082 (0.056) 1.62 (1.10)

t=5 0.148 0.096 (0.017) 0.186 0.075 (0.012) 0.150 (0.055)
Uz, 0,11, n =100 t=3 0.129 0.080 (0.054) 0.466 0.060 (0.059) 0.337 (0.144)
t=5 0.091 0.065 (0.024) 0.157 0.055 (0.023) 0.328 (0.253)
n =250 t=3 0.061 0.051 (0.024) 0.313 0.039 (0.042) 0.452 (0.240)
t=5 0.060 0.042 (0.011) 0.085 0.034 (0.008) 0.107 (0.110)
n =500 t=3 0.048 0.037 (0.012) 0.142 0.026 (0.019) 0.526 (0.335)
t=>5 0.043 0.030 (0.005) 0.059 0.024 (0.004) 0.047 (0.018)

Note: For each sample size (n) and number of repeated measures (t), the empirical standard deviation (SDempiricar; from Table 1) of effects is compared
with the average standard error (S.E.) estimate, with the standard deviation of recovered S.Es in parentheses. Instances where the SDempirica Was not
contained in = 1 SD of the average recovered S.E. are bolded. The results are organized by effect, including the main effect of the intercept ([32,,h ),

main effect of the slope (8,,),
0.0001 — 0.0346) across effects.

estimate, although there was greater variability in the
SAM estimates across almost all conditions (see
Table 1). Increasing both ¢ and »# improved the recovery
of effects and shrank the variability of estimates, sug-
gesting multiple avenues for improving estimates in real
data. However, even at relatively low sample sizes and a
minimal number of repeated measures (n = 100,
t = 3), the recovered effects of the latent interaction
(vz,n,n,) Wwere reasonable, especially for the LMS
approach, suggesting that probing for the latent inter-
action effect is feasible in many applied settings. By
contrast, the recovery of the main effect of the slope
(B.,,,) was poorest among all the considered effects,
especially at low »n and ¢, which may be related to the
relatively extreme value of #,; =0 (compared with
o7 = 3) it is evaluated at.

For the standard errors, the greater efficiency of the
LMS approach (in a properly specified model)" is evident
compared to the SAM approaches (naive vs. bootstrap
SEs), with much smaller variability in recovered effects.
The LMS standard error estimates approximated the
empirical variability in the recovered effect estimates well
in most conditions for this model specification, although
it tended to show too-small standards errors at higher
sample sizes (n = 250 and 500) and number of repeated
measures (t =5). The SAM approaches diverged in
expected ways. The naive standard errors in the two-
stage SAM approach substantially underestimated the

'See the Supplemental Material for a brief simulation with non-Gaussian
latent variables, where the LMS recovery of standard errors is
compromised compared with the bootstrap SAM approach.

and bilinear interaction effect (v,,,,,). Monte Carlo standard errors were small (Mycse = 0.0054; range =

empirical variability, while the bootstrap approach cor-
rected for the increased uncertainty in recovered effects.
Indeed, the bootstrap approach sometimes over-corrected,
with a higher average SE estimate than the empirical vari-
ability, although the true variability was almost always
contained within one standard deviation of S.E.s recov-
ered. Both the LMS and bootstrap SAM approaches
underestimated the uncertainty of the bilinear interaction
in the smallest sample size (n = 100) and number of
repeated measures (f = 3).

Time coding effects in the latent interaction model

The inferential challenge of time coding influences on
parameter recovery is well documented in the general
(Biesanz et al., 2004) and main effects distal outcome
(McCormick et al., 2024) latent curve model, and for
many parameters, the time coding relationships have
been previously defined. For a given set of data with
two different time coding schemes (e.g., intercept at
the first and the final time point), we can define a
transformation matrix T which relates the factor load-
ing matrices of the two models. In a linear growth
model, T has the form

el

where a moves the location of the intercept through
addition (see Figure 1) and b scales the slope through
multiplication with the factor loadings. For purposes
of this treatment, I assume that b = 1. For consistency
with the single-indicator latent factor approach I used

(13)
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in Figure 1, I expand T by 1 dimension with 1’s on
the diagonal and zeros otherwise

1 a 0
T=|0 b=1 0 (14)
0 1

SH

Using this expanded matrix, the results of any one
model solution can be transformed into another,
resulting in a transformed factor loading matrix (A™)

A" = AT (15)

a transformed covariance matrix (V™)
v =T 'yT " (16)
with the inverse transformation matrix (T™!)
T = (A“A") 'A7A (17)
and mean vector (o)

o =T 'a (18)
and with a transformed matrix of regression coeffi-
cients of the growth factors on the distal outcome(s)?

B* = BT (19)

To incorporate latent interactions into this time coding
framework, I derived a similar expression to transform
between interaction parameter estimates obtained under

two given time coding schemes, which results in the fol-
lowing equality (see Appendix for detailed derivations)

Y =TYT (20)

Using T from Equation 14 with a = —4 and vy; =
0.05, I show that with an original

b1 bz O 0 005 O
Y =0 vy 0[=]|0 0 O (21)
0 0 0 0 0 0
then Y* is
(1 0 o][0 005 0][1 -4
Y =TYT =|-4 1 0|]|0 0 o0f]|0 1
L0 0 1][0 0 Of[0 O 1
[0 0.05 0]
=0 -02 0
[0 0 0]
(22)

Note that this notation differs slightly from prior work (McCormick et al.,
2024) which simplified z; as an observed outcome. Both approaches give
the same results; the matrices are only adjusted to maintain
conformability.
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Two points of interest emerge out of this quadratic
expression. First, the bilinear interaction effect of the
growth factors is time coding invariant, such that

v}, = 12 (23)

However, the point of concern is that in order to
maintain the equality expressed in Equation 22 and
23, a quadratic effect (v, = —0.2) of the slope growth
factor (13 emerges—an effect we do not specify in
the theoretical model (Figure 1). Like the main effect
of the slope (f,,,) itself, which I showed in
McCormick et al. (2024) changes linearly across dif-
ferent time codings as a function of the main effect of
the intercept (8, )

ﬂ:, n ﬁz, 1 + ﬁz, mAa) (24)

the quadratic effect of the slope (v, ,2) changes lin-
early as a function of the bilinear interaction effect of
the intercept and slope (v, ,,)-

* —
Uz = Uz + 0z, A (25)

This means that unless this additional quadratic
effect is specified during model estimation, the like-
lihood equivalency between the two models is lost,
and the effect of the bilinear interaction on the dis-
tal outcome (v},) is nonequivalent—and therefore
biased—in alternative time coding models. In
Figure 2, I plot the estimates of the latent inter-
action effect (v, ,,,) from models with the inter-
cept coded at t=1,2,...,5, with the point estimate
and 95% confidence intervals in comparison with
the population generating value (v, = 0.05).
Failing to include the quadratic effect of the slope
(Um;) in these models biases the recovered esti-
mates of the bilinear interaction effect downwards
as we move away from the time coding approach
where v, ;2 = 0 (here at t = 1; see the Supplemental
Material for full results).

These time coding relationships only get more
complex if we consider the full matrix of interaction
effect—namely the addition of the quadratic effect of
the intercept. The time coding effects in Equation 22
and 25 only hold if v;; = 0. Otherwise, the time cod-
ing transformations are as follows.

1 0 0 V11 Lz O 1 a 0
T* = T/TT =]la b 0 0 U722 0 0 b 0
0 0 O 0 0 0 0 0 O
U11 D114 + D]zb 0
= | vj1a vpa® +vpab+ ok 0
0 0 0
(26)
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Plotting Recovered Latent Interactions from Mis-Specified Models

*Error bars indicate 95% confidence interval

0.02 =

0.00

3
Intercept Time Point (t)

Population Generating Value

Figure 2. Latent Interaction Estimates from Mis-Specified Alternative Time Coding Models. When only including the bilinear inter-
action effect, altering the time coding scheme results in nonequivalent effect estimates. In particular, as the time coding moves
away from the scheme in the generating model (here this means forward in the longitudinal design), the bilinear effect is biased

downwards toward zero.

which simplifies to

V11 L11a + V1 0
Y = |va vpa®+vpa+uvy, 0 (27)
0 0 0

when b = 1.

In this expanded model, v;; is the only truly
time coding invariant parameter in Y4{and likewise
m;; in II and w;; in Q if these matrices are
included). Even more troubling is that when v;; #
0, these time coding transformations violate the
upper-triangular  structure of Y1 as originally
defined, with Y], = v;;a and Y5, = v;;a + v1,. Both
elements imply an effect of the bilinear interaction
of #;1, on the distal outcome (z), and when mod-
eled with observed data, it should be impossible to
obtain separate estimates for these parameters. In
practice, we should expect that the obtained param-
eter estimates will combine these two transforma-
tions with the following expression.

* —
O pin, = Uz, + sz,ﬂ%Aa (28)

However, to focus the discussion here on the par-
ameter of interest—the bilinear interaction term—in
subsequent examples, I will consider the case where
v1; =0, allowing for simplified transformations for
the bilinear interaction

v’ = Uz, (29)

21112

and the quadratic effect of the slope

* —
Vgnz = Va2 0z mmAa (30)

hold.

Reevaluating LMS versus SAM performance in the
presence of the quadratic slope effect

I re-ran a subset of the simulations in Section 2.3,
including a quadratic effect of the slope during model
estimation. Given the results in Table 2, I only report
the SAM models with the bootstrap standard errors
here. Table 3 reports the mean (Mg ; compare to the
population generating parameter at left) and variabil-
ity (SDgy.) of the recovered parameter estimates, as
well as the average recovered standard error (Mgg;
compare to SDgy). The results were substantively
similar for the t =3 and ¢t = 5 conditions, with both
approaches showing unbiased average parameter esti-
mates for the main effect of the intercept (f8,, ) and
two interaction terms (v, ,, and v ,,,,); as with the
bilinear-only model, the recovery of the main effect of
the slope (f,, ) was substantially worse. The LMS
approach showed smaller standard errors compared
with the SAM approach.” ; however, both approaches
showed worse estimation of the sampling variability
(captured by the Mg column) compared with the

3As expected in data that conform to joint normality.
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Table 3. Model Recovery with a Quadratic Slope Effect (n = 250): LMS and SAM Estimates.

LMS Estimates

SAM Estimates (bootstrap S.E.)

n =250 n =250
I’:945/1000 r:1000/1000
Mest. (SDgst.) Msk. (SDsk.) Mest. (SDkst.) Mse. (SDsE)
ﬁz.m =0.20 t=3 0.201 (0.052) 0.036 (0.038) 0.204 (0.106) 0.138 (0.070)
t=5 0.201 (0.037) 0.028 (0.010) 0.203 (0.045) 0.097 (0.093)
 =0. t= ) . ) . ! ) 14 (0.

2 0.10 3 0.122 (0.332) 0.219 (0.204) 0.051 (0.989) 1.14 (0.582)
t=>5 0.103 (0.209) 0.148 (0.047) 0.086 (0.324) 0.880 (0.797)
Uz, p,n, = 0.05 t=3 0.045 (0.113) 0.076 (0.079) 0.057 (0.348) 0.363 (0.175)

mhz

t=5 0.047 (0.071) 0.050 (0.019) 0.051 (0.111) 0.349 (0.316)
Uz, n,, = 0.00 t=3 0.006 (0.208) 0.140 (0.208) 0.009 (0.624) 0.548 (0.264)
t=>5 0.001 (0.095) 0.073 (0.037) 0.000 (0.139) 0.495 (0.449)

Note: For the sample size n = 250 and number of repeated measures (t, row), the mean effect estimate (Mg ) is shown with the standard deviation of
effects (SDg) in parentheses, followed by the mean (Ms¢) and standard deviation (SDsg.) of the standard error. The number of replications that con-
verged r is indicated for t = 3/t = 5. The results are organized by effect, and organized by the generating values for the main effect of the intercept
(/51,,11 ), main effect of the slope (ﬁz,,,z), bilinear interaction effect (v, ,,,,), and quadratic effect of the slope (v;,,,,,) shown in the leftmost column. In
most instances, the generating value was contained in = 1 SD of the average recovered effect. Instances where the generating value or the empirical

SD was not contained in = 1 SD are bolded.

simpler bilinear only model, although still within * 1
SD of the sampling variability of recovered mean esti-
mates (SDgy;. column) for almost all conditions.

Visualizing time coding-dependent latent
interactions

I noted earlier the inferential advantages of plotting
and probing these effects, similar to familiar methods
for evaluating bilinear interactions in observed varia-
bles (Aiken & West, 1991). To visualize the latent
interaction effect across different available time cod-
ings, I used the transformation functions outlined
above to estimate the predicted effect across an arbi-
trary number of alternative models. However, visualiz-
ing these relationships is not entirely straightforward.
While each of the latent interactions—the bilinear
(m1,) and quadratic slope (i73) effects—are two-way
interaction effects, the pattern of changes in parameter
estimates across different time codings means that we
need to adopt techniques common in three-way inter-
action effects. Here, I consider two different
approaches for visualizing the latent interactions
among growth factors.

Simple slopes

In the latent interaction model, we must contend with
the fact that we have both time coding and true inter-
action effects that need to be probed and plotted. As
such, while they differ in their estimation, the effects
here resemble a 3-way interaction in traditional regres-
sion contexts. As such, we have several options for plot-
ting the resulting effects, depending on which feature
we wish to highlight. I first use a familiar simple-slopes
approach (Aiken & West, 1991; Bauer & Curran, 2005;

Curran et al., 2004), where I plot the expected values of
the outcome (z) as a function of the latent slope factor
(n,). Figure 3 displays this approach, where the differ-
ent regression lines represent the expected effect of #,
at different levels of 7,. Because we do not directly
observe the values of the intercept or slope, I instead
probe this interaction at model-implied levels of the
intercept (i.e., the mean and = 1 SD). I then display
different simple slopes for a subset of time points (f) in
separate panels (Figure 3). Given the slope’s theoretical
importance in understanding the consequences of
change (McCormick et al., 2024), I evaluated the effect
of 17, at different values of 7, across integer values of #,*
however like observed interactions, the latent inter-
action is symmetric and I could equivalently highlight
the effect of #, if that was of interest.

Here the presence of the negative quadratic effect
of the slope becomes more pronounced as we move
the intercept time point (f) forward in the longitu-
dinal design, although the bilinear interaction terms
maintain a constant positive influence on the main
effect of the slope. Note that even at t =1, there is
some curvature to the simple slopes lines, in contrast
to the initial models (Table 1), where I did not esti-
mate a quadratic slope effect. However, like the aper-
ture (Hancock & Choi, 2006; McCormick et al., 2024)
minimizes the covariance between the slope and inter-
cept in the main effects only model, it is possible to
use the results of any single time coding model to
estimate a time point where the quadratic effect of the
slope is zero, and only the bilinear interaction
remains. Indeed the formula to find this point falls

“Note that integer values are simply a convenient heuristic, but that the
time coding transformations can be applied across any real value of t.
Nevertheless, for practical reasons, t should most often be bounded
between 1 and T.
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Plotting Simple Slopes for the Distal Outcome

Intercept Time Point

t=2 i t=3

4.0

-1 0 1 -1 0 1 -1 0
N2

1 -1 0 1 -1 0 1

Figure 3. Visualizing the Latent Interaction with Simple Slopes. The model-implied values of the distal outcome (2) are plotted
against values of the slope (1,;; x-axis) for model-implied values of the intercept (1;;) at the mean and = 1 standard deviation
(separate trend lines), across different time coding schemes (separate panels). Note that as the coded intercept moves forward, the
quadratic slope effect induces additional curvature to the model-implied expected value trend lines. In this example, these simple
slopes show that the magnitude of the effect of the slope on the distal outcome increases at higher levels of the intercept.

Plotting Simple Slopes for the Distal Outcome

Interaction Aperture

Intercept Time Point

| t=-0.229

5.6

E[z I 4, m2]

N2

Mean
- -18D

Figure 4. Visualizing the Latent Interaction Aperture using Simple Slopes. By estimating the moderated distal outcome growth
model at the interaction aperture, we can eliminate the curvature induced by the quadratic slope effect, leaving only the simple

bilinear interaction effect to interpret.

directly out of Equation 30 and has a parallel struc-
ture to that of the aperture, with the following form

-, ,2
_oh (31)
UZJh'Yz

a =

Thus by adjusting each of the factor loadings from
any estimated solution by substituting this value of a
(in this simulated example, a = 0.229) into the trans-
formation matrix from Equation 14, we can obtain a
solution where v} 2= 0, resulting in no curvature to
the model-implied simple slopes (Figure 4). For the
simulated example data, this implies and interaction
aperture 0.229 time units before the first measurement
occasion. Note that this is not identical to the covari-
ance aperture (Hancock & Choi, 2006), which is at
a = —0.340 in these same data.

Like the covariance aperture, this interaction aper-
ture is not constrained to only include values that

occur within the observed time range. As such, while
the interaction aperture is an attractive time point to
estimate the model intercept for theoretical reasons, it
is likely inadvisable in real data contexts to estimate
the intercept outside the range of the data in order to
protect the reliability and validity of model inferences.

Regions of significance

An alternative to the simple slopes approach is to
adopt a regions of significance plot (i.e., Johnson-
Neyman plots; Johnson & Neyman, 1936) to help
characterize how the regression effects of the latent
interactions on the distal outcome change across alter-
native time codings. Similar to the main effect of the
intercept and slope on the distal outcome in the
model without latent interactions (see Figure 2;
McCormick et al., 2024), here there is a clear contrast
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Regions of Significance: Time-Coding Transformations of Y

0.1- '

-0.1- T
"
:
c ! Uik
0.2~ 3

0.3

3
Intercept Time Point (t)

Significance &= ns. &= p<0.05

Figure 5. Visualizing Time Coding Changes in the Latent Interaction using Zones of Significance. Using a zones of significance
approach, we can visualize the time coding-related changes in the quadratic slope effect v, g asit changes linearly across different
time coding schemes, going from non-significant to significant (at p < 0.05) when the intercept is placed at or after t = 2.75.

of how time coding changes impact the effect of the
bilinear interaction (v, ,,) and the quadratic effect of
the slope factor (v, ,2). In Figure 5, I highlight that
the point estimate and standard errors for both the
effect of the bilinear interaction (b,,,,,,) are time cod-
ing invariant (again so long as we include v, ;2 in the
model—failing to do so will lead to changes in i ,,,,
due to misspecification; see Figure 2). In contrast, the
estimated quadratic effect of the slope v, ,: changes
linearly across different potential intercept time points
(#), just as expected. Note a key difference in this plot
from traditional regions of significance plots: the
standard errors do not show the usual pronounced
quadratic shape because the transformations are deter-
ministic. Similar to prior work (McCormick et al.,
2024), this approach shows the potential for the sign
and significance of the quadratic effect to depend on
the time coding scheme adopted (Figure 5).

The regions of significance plot also locates where
within the time point range the quadratic slope effect
will be zero (and therefore result in Figure 4), right
before the start of the study period. It further shows
that the effect of the bilinear interaction is invariant
to time coding choices, so long as the quadratic slope
is included in the model. In the next section, I will
turn to an empirical example using real sample data
to highlight how these approaches operate in practice.

Real data example

To highlight the complexities I have outlined above in a
real-data context, I drew publicly available data from
the Tennessee’s Student Teacher Achievement Ratio
(STAR; Word et al, 1990; Achilles et al., 2008, data
retrieved from https://doi.org/10.7910/DVN/SIWHF)

project (n = 772), including a maximum number of 4
repeated measures per individual (mode = 3) from the
5th to the 8th grade. I consider here a model where
growth is estimated on repeated measures of math
achievement over 4 years with a distal outcome of over-
all grades at the end of high school (measured on a 1-
100 scale; centered prior to analysis). Prior to fitting the
model, I centered the repeated measures of math
achievement using the 5th grade mean and divided by
10 to rescale all variables to aid convergence.

I first fit a distal outcome latent curve model with
only the bilinear latent interaction effect (ie,
Figure 1). To assess the impact of different time cod-
ing schemes, I chose two (of a theoretically infinite
set) standard schemes often deployed in practice: 1)
an initial status model (i.e., intercept at the first time
point), and 2) and average status model (i.e., intercept
at the middle of the trajectory). Comparing these two
solutions allows us to see both the impact of time
coding decisions and of the exclusion of the quadratic
effect in real and incomplete data.

The results of the bilinear-only models are pre-
sented in Table 4. While the differences are slight, we
can see that the initial status model (¢ = —5874.75)
and average status model (¢ = —5874.79) are not
likelihood-equivalent, and the effect of the bilinear
latent interaction is attenuated (v, = 0.642 vs.
0.718), mirroring the simulated example (Figure 2). I
then fit the same time coding schemes, but with the
quadratic interaction of the slope (7%) included as an
additional predictor of the distal outcome (Table 5).

As expected, the key differences are that now the two
alternative time coding models are likelihood equivalent
(¢ = —5874.47) and the effect of the latent bilinear inter-
action is constant (v, ,, = 1.298 V a) while the effect
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Table 4. Parameter Recovery: Bilinear Effect Only.

Initial Status Average Status
/ BIC / BIC
—5874.75 11842.58 —5874.79 11842.67
Est. S.E. Std. Est. p Est. S.E. Std. Est. p
Bz, 1.697 1.559 0.938 0.276 1.785 1.463 1.063 0.222
21 —34.254 11.927 —1.190 0.004 —38.963 10.542 —1.355 < 0.001
Oz, 0.718 0.377 0.096 0.057 0.642 0.355 0.093 0.071
%y, —1.749 0.193 —0.453 < 0.001 0.522 0.165 0.126 0.002
Oy, 1.514 0.066 6.238 < 0.001 1.513 0.066 6.228 < 0.001
2% 14.912 1.538 1" < 0.001 17.302 1.169 1 < 0.001
Y 0.753 0.330 0.023 0.851 0.383 0.026
P21 0.803 0.190 < 0.001 0.842 0.140 < 0.001
Yy 0.059 0.041 1" 0.154 0.059 0.040 1" 0.138

Note: ¢ is the log-likelihood. BIC is the Bayesian Information Criterion. Est. is the sample-recovered parameter. S.E. is the
standard error of the estimate. Std. Est. is the standardized estimate. Beta () denotes main effects regression coefficients
associated with the latent growth factors, upsilon (v) denotes the regression coefficients associated with the latent inter-
action, alpha (x) denotes factor means, psi (i) denotes factor variances and covariances, and rho (p) denotes the factor
correlation. *Denotes a constrained parameter (not estimated).

A. Plotting Simple Slopes for High School Cumulative Grades
Intercept Time Point
| I ]
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B. Regions of Significance: Time-Coding Transformations of Y
VYzmmp
O_ __________________________________________
_5.
.10 Uz}
.15.
-20-
1 2 3 4

Intercept Time Point (t)

Significance &= n.s. & p<0.05

Figure 6. Time Coding Results for Cumulative High School Grades. While the zones of significance plot (B) highlights that the
quadratic slope effect is never significant within the range of the repeated measures data, the magnitude of the effect neverthe-
less induces considerable curvature into the simple slopes plot (A). The positive bilinear interaction v,,,,,, suggests that higher ini-
tial math performance (i7;) boosts the impact of gains in math performance (,,,,) on high school grades (2).

of the latent quadratic slope changes linearly (initial sta-
tus v 4,,, = —6.946; average status v, = —8.893;
Avg yp, = —1.948 = —1.5 % 1.298). Below, I plot the
simple slopes and Johnson-Neyman regions of signifi-
cance approaches to probing these effects for the distal

outcome of cumulative high school grades and how they
interact with the choice of time coding.

As can be seen in Figure 6(B), while the latent
quadratic slope effect (0, ,2) is never significant within
the range of observation, it is nevertheless quite large
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Table 5. Parameter Recovery: Bilinear and Quadratic Effects.
Initial Status Average Status
i BIC
—5874.47 11848.66 —5874.47 11848.66
Est. S.E. Std. Est. p Est. S.E. Std. Est. p

ﬁz,,ﬁ —0.997 0.685 —0.575 0.145 —0.997 0.685 —0.605 0.145

0, 20.887 13.778 1.306 0.130 22.380 14.616 1.400 0.126
V2,111, 1.298 0.430 0.322 0.003 1.299 0.430 0.339 0.003
V2,1, —6.946 4435 —0.187 0.117 —8.893 4.968 —0.239 0.073
Oy, —1.753 0.192 —0.442 < 0.001 0.518 0.164 0.124 0.002
o, 1.514 0.065 3.520 < 0.001 1514 0.065 3.520 < 0.001

" 15.736 1419 1% < 0.001 17.406 1.175 1 < 0.001
Vo 0.418 0.282 0.139 0.695 0.342 0.042
P 0.245 0.183 0.180 0.387 0.157 0.014
W 0.185 0.116 1 0.111 0.185 0.116 1 0.111

Note: ¢ is the log-likelihood. BIC is the Bayesian Information Criterion. Est. is the sample-recovered parameter. S.E. is the
standard error of the estimate. Std. Est. is the standardized estimate. Beta (/) denotes main effects regression coefficients
associated with the latent growth factors, upsilon (v) denotes the regression coefficients associated with the latent inter-
action, alpha (x) denotes factor means, psi (i) denotes factor variances and covariances, and rho (p) denotes the factor
correlation. *Denotes a constrained parameter (not estimated).

in terms of effect size. As a result, the model-implied
simple slopes display a pronounced curvature at all
the evaluated intercept time points (Figure 6(A)). The
regions of significance plot (Figure 6(B)) implies that
the interaction aperture (where O = 0) is located
sometime prior to the start of the study. Using
Equation 31, we can see that this is indeed the case;
the interaction aperture location is estimated as being
5.351 time units prior to the first observation (~ late
kindergarten). As such, I chose to retain the initial
status model as the most interpretable solution
because it is located closest to this aperture while
remaining within the window of observation.

Substantively, we can interpret the significant bilin-
ear interaction (Figure 6(A); left-most panel) as indi-
cating a positive synergy between high intercepts and
slopes such that those with greater starting math
achievement and show greater gains during middle-
school have higher predicted cumulative grades in
high school. Given the magnitude of the quadratic
latent slope effect, there is at least the suggestion that
there may be some optimal combination of intercept
and slope beyond which we see performance reversals,
however, those results would need to be interpreted
with extreme caution given the large uncertainty (and
in the solution I chose to retain, non-significance)
associated with that quadratic effect.

Recommendations for applied researchers

Adopting a theoretical perspective on using trajecto-
ries as a whole, rather than unique effects of the dif-
ferent components therein, is an attractive one for
probing a wide range of phenomena in the behavioral

and education sciences. Interactions provide a

powerful lens for understanding how the effect of the
intercept or slope exists in the context of other fea-
tures of the model; for instance, they allow one to dis-
tinguish between those who show greater education
gains from relatively low versus high baseline ability.
However, the complexity of time coding effects,
already challenging for interpretation when only using
main effects (McCormick et al., 2024) are, perhaps
unsurprisingly, magnified further with the introduc-
tion of latent interactions.

The primary issues arose from the appearance of
latent quadratic effects of the slope and the intercept
(in the full solution) across different time coding solu-
tions. Because these effects are not a standard feature
of the theoretical model for understanding joint
impacts of individual differences in the trajectory
components, applied researchers may unknowingly
fail to include these effects, leaving themselves open
to nonequivalent solutions depending on the inference
decisions about the intercept that may change across
applications (e.g., initial vs. average vs. final status).
When possible, researchers may choose to estimate
these models at the intercept aperture to maximize
the interpretability of the bilinear interaction, but as
we saw with the applied example, this is not always
feasible. The plotting and probing approaches I dem-
onstrated here (Figures 3-5) can aid in the interpret-
ation of results in much the same ways as are often
used in observed variable interactions.

One natural question that may arise is whether
applied researchers can simply ignore these problem-
atic quadratic effects because while this may result in
a mis-specified model, all models are likely mis-
specified to some degree in real data. This question
may seem initially reasonable given the complexity of
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interpreting multiple latent interactions and the com-
putational demands of estimating these features; how-
ever, Figure 2 and the results of the real data analysis
(Table 4) suggest that this simplification approach
impairs the ability to detect the bilinear interaction
effect of interest—resulting in deflated effect sizes.
Specifically, the larger the latent quadratic slope effect
would be if included, the more deflated the estimates
of the bilinear interaction are in models that omit that
quadratic effect.

The challenges of estimation here may be addressed
by adopting the Structural After Measurement (SAM;
Rosseel & Loh, 2024) approach, which does not require
estimating the complicated mixture components needed
in LMS. As such, the SAM approach can accommodate
a greater number of interactions without convergence
issues. One current limitation of the SAM approach;
however, is that reliable standard error estimates have
not yet been derived. As such, researchers interested in
employing the SAM approach should manually boot-
strap the standard errors directly through resampling
their target data, rather than through the internal lav-
aan bootstrapping procedure—although this may
change in future versions. The SAM approach with
bootstrap standard errors is also more robust to distri-
butional misspecification of the latent variables (see
marginal Gumbel simulations in the Supplemental
Material). Nevertheless, for a minimal number of latent
interactions and latent variables that conform to the
Gaussian assumptions, the LMS approach returns
smaller standard errors (i.e., greater efficiency).

Conclusions

My goal here was to explore the utility and challenges
of using latent interactions to test the impact of the tra-
jectory as a whole on distal outcomes rather than the
unique effects of its constituent features (e.g., intercept
and slope separately). For estimating joint effects in
continuous predictors, I turned to methods for estimat-
ing latent interactions between the growth factors, with
a core theoretical focus on the bilinear interaction
between intercept and slope. Based on prior work
(Biesanz et al., 2004; McCormick et al., 2024) highlight-
ing the importance of considering time coding decisions
for these models, I explored how these decisions would
impact estimation and interpretation of effects in a
moderated distal outcome latent curve model. I laid out
derivations for estimating changes in model parameters
across alternative time coding schemes and confirmed
them in artificial and real data. These derivations
revealed a concerning pattern of effects. While the

primary effect of interest in these models is the bilinear
interaction, Equation 22 and 26 demonstrate how latent
quadratic effects appear even when not specified in the
data generating model, and when omitted from the
model, result in bias in the bilinear interaction effect
estimate. I showed how specifying at least the latent
quadratic effect of the slope allowed me to obtain a
time-coding invariant bilinear interaction effect and
developed plotting and probing techniques for under-
standing how these latent interactions impact the distal
outcome.

To further develop this initial work, there is a
broad scope for additional methodological develop-
ments and investigations, including both for moder-
ated distal outcome growth models in particular, as
well as models with latent interactions more broadly.
First, to maintain the focus of the current work on
deriving and probing the time coding transformations
for the latent interaction(s), the set of simulation con-
ditions was constrained to a small set of population
models and conditions. Future work should seek to
expand on these initial simulations to more fully map
the robustness of the models for capturing latent
interactions among the latent growth factors, includ-
ing refining estimates of power across a broader range
of sample sizes and number of time points, investigat-
ing the role of missing data, and for more complex
nonlinear growth trajectories. For latent interaction
models more generally, substantial work remains to
maximize the utility of these approaches, including
derivations of valid standard errors for the two-step
Structural After Measurement (SAM) product esti-
mates, investigations into robustness of methods with
and without distributional assumptions (e.g., LMS vs.
SAM) in truly nonlinear data (note that the simula-
tions in the Supplemental Material only rely on mar-
ginal nonlinearity, but many more-complex nonlinear
patterns are possible; see Fairchild et al. (2024);
Foldnes and Grenneberg (2019, 2022); Grenneberg
et al. (2022), for examples).

Finally, the central question of how to use trajecto-
ries jointly as predictors of downstream outcomes
remains a fertile area of continued research. While the
continuous nature of the bilinear interaction is an
attractive one for understanding the context of inter-
cept and slope, these questions could be recast in
terms of a discrete set of “kinds” of different trajecto-
ries. This recasting would lend itself naturally to the
estimation of latent classes of trajectories using latent
class (e.g., Muthén & Muthén, 2000; Nagin, 1999)
models which have distinct combinations of growth
features. These latent class growth models have faced


https://doi.org/10.1080/00273171.2026.2613311
https://doi.org/10.1080/00273171.2026.2613311
https://doi.org/10.1080/00273171.2026.2613311

general critiques in the past as prone to extract stereo-
typical or spurious classes of growth (e.g., always
high/low stable, increasing, and decreasing classes;
Sher et al., 2011), and these issues likely would remain
in the kinds of models considered here. Nevertheless,
as a method for estimating areas of high local density
in multivariate space, these latent class approaches
may help researchers gain better leverage in interpret-
ing the consequences of trajectories as a whole for
later developmental outcomes. One pressing question
that should be addressed before adopting these
approaches more broadly is the sensitivity of class size
and composition to choices of time coding. If latent
class solutions are robust to time coding in a way that
continuous latent interactions are not, this may
increase the attractiveness of these discrete latent vari-
able approaches in distal outcome growth models.
However, if features of latent class growth models
(e.g., class enumeration or assignment)depend on time
coding choices, then the added complexity of mixture
distributions may serve to obscure rather than clarify
our understanding of the downstream consequences
of change over time.
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Appendix I. Time coding transformations with
latent interactions

Parameter estimate transformations

Prior work (Biesanz et al., 2004) defined a transformation
matrix to compute the results for an alternative coding
scheme of time such that

T = (AYA") 'AYA (AL1)
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Taking advantage of the likelihood equivalence between
different time coding solutions, Biesanz et al. (2004) further
showed that because

A'W'A" = AYA and Ao" = Aa (A1.2)

then
| G vl ) and o =T 'a

We also outlined in McCormick et al. (2024) that a simi-
lar approach can be used to show that for the matrix B of
distal outcome regressions

A"W'B" = AYB

(AL.3)

(Al1.4)
such that

B*=TB (A1.5)

Because the repeated measures y,; are only connected to
the distal outcome(s) z, only through the latent factor
structure, we derive the time coding-dependent parameter
estimate changes straightforwardly. Consider the covariance
between y; and z, in a model with latent endogenous
interactions

L. =E[yz] =E [(A'l +2,) (B + 00+ sz)]
=E|(An+5)(WB+ 0T (@+0) +)|

= (An)(NB+nYa) = A¥YB + A¥Y a
=AY(B+7Ya)

(Al.6)

So alternative time coding models must satisfy the
equality

AV (B +Y*a") = AY(B+7Ya) (A1.7)

allowing us to solve for Y™ using Equation Al.3 and Al.5,
detailed below

AT)(TwT ) ([T'Bl + T[T 'a)) = A¥(B +YTa)
AYB + AYT'Y*T 'a. = AYB + A¥Y a
AYT 'Y T g = A¥YY a
Ti'r*1 ! =7
(A1.8)
which results in

T =TYT (A1.9)

Using this transformation also allows us to obtain the
scalar equations for each individual parameter, recapitulat-
ing Equation 26

1 0 0 D11 U1z 0 1 a O
Y =TY¥T=|a b 0 0 vy 0 0 b 0
0 0 O 0 0 0 0 0 O
vir va+opb 0
= |vpa vpa® +opab+vub* 0
0 0 0
(A1.10)

which we can simplify in various ways (e.g., when b =1
and/or v;; = 0).
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Standard error transformations

The standard errors of the transformed results can also be
straightforwardly obtained. Prior work (Biesanz et al., 2004;
Curran et al., 2004; McCormick et al.,, 2024) outlined how
to obtain the Jacobian matrix of partial derivatives for the
covariance matrix of the latent factors
ovec(¥)]’
]vec(‘l’)ﬁvec(‘l‘*) = W
!
ST '@ Tl)vec(‘l’)] (AL11)

ovec(W)
=TT

and the matrix of distal outcome regressions
ovec(B*)]’
Jvec(B)—vec(B') = Svec(B).

_ Fvec(T/B)} /

Svec(B) (A1.12)
=[r7
=T
such that
ACOV(W*) = ];ec(‘l’)ﬂvec(‘l’)‘)ACOV(\I’)IVEC(‘I‘)*?VEC(‘I’X)
(A1.13)
and

ACOV(B*) = ]:/ec(B)—wec(Bx)ACOV(B)]vec(B)Hvec(B*)
= T'ACOV(B)T
(A1.14)

Applying the same procedure to the matrix of interaction
effects ', we can see that

1/
]vec(T)ﬂvec( N = [if:c(é‘;}

o |:5(T®T)vec('r):|/ (A1.15)
- ovec(Y)
=(T®T)
such that
ACOV( *) = ]:/ec('r)ﬂvec('rx)ACOV(T)]VEC(T)—WEC(T‘)
(Al.16)

With standard errors being obtained by taking the square
root of the diagonal of the resulting matrix ACOV(Y™).

Appendix Il. Expanded transformations in
nonlinear models and models with multiple
distal outcomes

For simplicity, the main results—as in McCormick et al
(2024)—consider the case of the linear growth model with a
single distal outcome. However, the matrix expressions
derived in this treatment generalize readily to contexts of
nonlinear polynomial growth models, and to models with

more than a single distal outcome. Below, I outline how
these transformations follow the same expressions as before.

Time coding derivations in the quadratic growth
model

In the quadratic model, the factor loading matrix A is
expanded to contain squared factor loadings. For instance,
the quadratic version of Equation 3 would be

1 0 0 O
1 1 1 0
1 2 4 0
Aquad = 13 9 0 (A2.1)
1 4 16 0
0 0 0 1

with a matrix of distal outcome regressions B from
Equation 4 as

0 0 0 0
Buaa = | 0 0 0 0
ﬁzl’ﬂl ﬁzl,”lz ﬁzbﬂa 0

To accomplish time coding transformations in expanded
polynomial models, we can also expand the transformation
matrix T to include an additional column. This would have
the form

(A2.2)

1 a a4 0
0 b 2ab 0

Tquad = 00 B 0 (A2.3)
00 0 1

with a quadratic expression of the a and b shift and scaling
parameters in the quadratic column. However, deriving
these elements individually is not necessary, as they can be
computed directly from the expression in Equation Al.l,
which only requires that we know the factor loading matrix
of the original (A) and target (A*) model. Once we have
this transformation matrix T, all of the same transformation
expressions from Appendix I hold. Indeed this is the true
advantage of adopting matrix, rather than scalar, expres-
sions for these transformations. A demonstration of these
expressions can be seen in the Supplemental Material.

Time coding derivations with multiple distal
outcomes

Expanding the model to include multiple distal outcomes
into the model involves similarly straightforward expansions
of the ¥ and B matrices. The resulting equations expand
on Equations 3 and 4, with additional rows and columns
for a second distal outcome, including in the measurement

Vii 1 0 0 O &1i
Yai 1 1 0 0 &
V3i 1 2 0 O i &3i
yal=113 0 of[™|+]|es (A2.4)
Vsi 1 4 0 o] £s;
i 0 0 1 ofL" e
|z | [0 0 0 1] e |




and structural

i o 0 0 0 0 N Gii
Nai % 0 0 0 0 Nai i
+ +
r]zli O{Zl ﬁzl,ql ﬁzl,nz 0 0 nzli Czli
’7221‘ O(ZZ 22,1y 22,1 0 0 ’7221‘ szi
(A2.5)

model. The covariance matrix ¥ also expands, maintaining the
block structure of covariances for the latent growth factors and
distal outcome single-indicator factors (these cross-block
covariance relationships are structured as regressions in B).

Vi Y 0 0
_ W Yy O 0
Y= 0 0 Y. W (A2.6)
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The time coding transformation matrix T expands as
well but changes little in terms of substantive structure

0 0

b=1

a
0 (A2.7)
0

1

0 0 o0
T=
0 1 0
0 0 1

Once we have these expanded matrices, all the same
matrix expressions as before yield the correct time coding
transformations across alternative placements of the
intercept.
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