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ABSTRACT

Growth mixture models (GMMs) are popular approaches for modeling unobserved popula-
tion heterogeneity over time. GMMs can be extended with covariates, predicting latent class
(LC) membership, the within-class growth trajectories, or both. However, current estimators
are sensitive to misspecifications in complex models. We propose extending the two-step
estimator for LC models to GMMs, which provides robust estimation against model misspe-
cifications (namely, ignored and overfitted the direct effects) for simpler LC models. We con-
ducted several simulation studies, comparing the performance of the proposed two-step
estimator to the commonly-used one- and three-step estimators. Three different population
models were considered, including covariates that predicted only the LC membership (I),
adding direct effects to the latent intercept (ll), or to both growth factors (lll). Results show
that when predicting LC membership alone, all three estimators are unbiased when the
measurement model is strong, with weak measurement model results being more nuanced.
Alternatively, when including covariate effects on the growth factors, the two-step, and
three-step estimators show consistent robustness against misspecifications with unbiased
estimates across simulation conditions while tending to underestimate the standard error
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estimates while the one-step estimator is most sensitive to misspecifications.

Introduction

Growth mixture models (GMMs; B. Muthén &
Shedden, 1999) are statistical models that can be used
to identify distinctive growth trajectories within a het-
erogeneous population, which have been widely used
in applied research. For example, Bowers and Sprott
(2012) performed GMMs to evaluate the change over
time in school achievement profiles of students, and
Chen et al. (2024) utilized GMMs to identify distinct-
ive growth trajectories of cognitive function among
aging citizens with diabetes in China.

In GMMs, a categorical latent class (LC) variable
captures the growth trajectories of unobserved sub-
populations, relaxing the single homogeneous popula-
tion assumption of the simpler latent curve model
(LCM; Meredith & Tisak, 1990). GMMs can be used
to capture a variety of linear and nonlinear growth
trajectories. In this paper, we will focus on the com-
monly used linear growth pattern, in which the

growth trajectory is captured by two continuous
growth factors, namely the latent intercept and slope
variables. After identifying the sub-populations and
their growth trajectories (often called the measurement
model), researchers are usually interested in under-
standing the within- and between-person variability
by incorporating external variables into GMMs, also
known as covariates (known as the structural model).
Currently, two main estimators are available for
estimating parameters of the GMMs with covariates,
namely, the one-step and the bias-adjusted three-step
estimators (Diallo & Lu, 2017). For the one-step esti-
mator, also known as the full information maximum
likelihood (FIML) estimator, the measurement model
and structural model are estimated simultaneously by
using all of the available information in the dataset,
including the covariates (Huang et al, 2010;
McCutcheon, 1987; Vermunt, 2010). This estimator
yields efficient estimates when all the model assump-
tions hold (Bakk et al., 2013). However, simultaneous
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estimation may introduce interpretational confound-
ing, where the latent construct that the applied
researchers want to measure can change every time a
new covariate is added to the model (Asparouhov &
Muthén, 2014; Bakk & Kuha, 2018; Di Mari et al.,
2023; Rosseel & Loh, 2024; Vermunt, 2010).

To prevent the interpretational confounding, as an
alternative to the one-step estimator, the bias-adjusted
three-step estimator has been developed for LC mod-
els with external variables (Vermunt, 2010), which
estimates the measurement model and structural
model separately by breaking down the estimation
process into three steps: (1) estimating the measure-
ment model only using repeated measures in the data,
(2) classifying individuals to the latent classes based
on their estimated posterior class membership proba-
bilities from step-one, and (3) estimating the struc-
tural model by relating the class membership to
external variables, while correcting the classification
errors introduced in step-two. A series of approaches
were developed for LC models to correct the classifi-
cation errors (Bolck et al., 2004; Vermunt, 2010). The
three-step maximum likelihood (ML) method pro-
posed by Vermunt (2010) performs well in many LC
models with external variables (e.g., latent class ana-
lysis [LCA], latent Markov [LM] models), yielding
unbiased and efficient parameter estimates (Bakk
et al,, 2014). In the remainder, we refer to the bias-
adjusted three-step estimator as the three-step estima-
tor for simplicity.

The GMMs with covariates

The GMMs have a more complex measurement model
than the LCM, as shown in Figure 1. Specifically, it
contains a set of repeated measures (i.e., y;,¥, .- Yps
where T is the number of time points.) that are
regressed on the continuous latent intercept (1,) and
slope (1) variables. Furthermore, a categorical LC
variable (c) is defined by the latent intercept and slope
variables, allowing for population heterogeneity.
Covariates can be included to predict the class mem-
bership (reflected by the blue line, from covariates x;
and x, to ¢), but also to directly predict the class-
specific growth factors (visualized as the two red lines,
from covariate x, to #,; from covariate x, to #,), or
both. For example, Chen et al. (2024) related cognitive
function trajectories of Chinese respondents 45 years
and older with diabetes to a set of baseline covariates
(e.g., age, education level, gender, etc.) to discern pre-
dictors of cognitive function scores among Chinese
elderly.

Figure 1. Growth mixture model with covariates x; and x,,
where y,(t =1,...,T) is a vector of indicators that are directly
regressed on the latent intercept and slope variables measured
at t time points (e.g., ¥, Ye, --- Yin, Where H is the number of
indicators), ¢ is the LC variable, 74 is the latent intercept vari-
able, and #; is the latent slope variable.

If the covariates solely predict class membership,
the existing estimators yield accurate parameter esti-
mates when the measurement model is correctly
specified and the classes are well separated (L. Li &
Hser, 2011). However, when the covariates have direct
effects (DEs) on the growth factors (the red lines in
Figure 1), the situation becomes more complicated. In
GMMs, the growth factors, serving as indicators of
the latent class variable, constitute a portion of the
measurement model. When the covariates have DEs
on the growth factors, the association between growth
factors is not fully explained by the latent class varia-
bles. This situation violates the basic assumption of
conditional independence between covariates and the
indicators of the measurement model and shows
measurement non-invariance or differential item func-
tioning (Kankara$ et al., 2010; Vermunt, 2010). In
simple LC models (we refer to the simplest type of a
mixture model, e.g., LCA), we assume the indicators
of latent classes (i.e., items) to be conditionally inde-
pendent of the covariates given class membership. If
we ignore these DEs, the un-modeled residual correla-
tions between indicators and covariates will lead to
bias in the parameter estimates (Masyn, 2017).
Likewise, the parameter can be biased when the cova-
riates have DEs on the growth factors that define the
LCs in the GMMs.

The performance of existing estimators of GMMs
in the presence of DEs on the latent factors

In the presence of DEs, the conditional independence
assumption can be relaxed by modeling the DEs of
the covariates on the concerned indicators. However,
applied researchers may have limited prior evidence
confirming which covariates actually exert DEs, and
be uncertain in which specific indicators are affected
by these DEs. In GMM, such ambiguity may result in
model misspecification, either through omitting



significant DEs or by erroneously modeling nonexis-
tent effects.

For the three-step estimator, ignoring the DEs of
covariates at step one can severely distort the measure-
ment model and lead to substantial parameter bias in
LCA and GMM (Asparouhov & Muthén, 2014). To
account for this drawback, Asparouhov and Muthén
(2014) proposed a possible modification by including
the DEs in the measurement model of GMMs, and the
modified three-step estimator performs comparably to
the one-step when the classes are well separated.
However, the number of manipulated factors in this
study was limited, and the sample size of 10,000 used
in the simulation study is not representative of many
applied research settings. Moreover, another more
extended simulation study (Diallo & Lu, 2017) showed
conflicting results with those of Asparouhov and
Muthén (2014). Namely, the modified three-step esti-
mator performs worse than the one-step estimator
across all conditions. Furthermore, the modified three-
step estimator as proposed by Asparouhov and Muthén
performs even worse than the conventional three-step
estimator when the sample size is less than 2000, sug-
gesting that the modifications of the three-step estima-
tor should be carefully considered. While this estimator
has also been developed in the context of GMM:s
(Asparouhov & Muthén, 2014; Diallo & Lu, 2017), so
far the amount of evidence about its performance is
insufficient in more complex setups of GMMs with
covariates, particularly when DEs are specified on
latent intercept and slope, and in different DE specifi-
cations that may occur in applied research contexts.

Recently, Vermunt and Magidson (2021a) proposed a
modified version of the three-step estimator for LC
models in the presence of DEs, modeling the covariates
of interest on indicators and class membership at step
one, and re-estimating the effects of concerned covari-
ates on class membership at step three to prevent the
overestimation of the DEs due to the unmodeled indir-
ect effects via LC variables, and also correcting the clas-
sification error that differs across categories of covariates
with DEs. This modified method works well, leading to
unbiased parameter estimates in LC models. However,
their modeling strategy was originally developed for the
DEs on the observed indicator in LCA, and its general-
ization to handle DEs on latent variables—specifically
the latent intercept and slope in GMM—has not yet
been formally articulated or examined.

For the one-step estimator, the known DEs can be
easily specified in the full model. However, despite the
interpretational confounding problem, misspecifica-
tion of DEs can distort the measurement model and
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thus change the latent class solutions, leading to
improper interpretation of results (Vermunt, 2010).
Furthermore, the one-step estimator exhibits substan-
tial bias when direct effects (DEs) are ignored within
the regression mixture model (RMM) framework
(Kim et al., 2016). In contrast, when covariates that
contribute to class separation are appropriately
included, the one-step estimator performs well under
the factor mixture model (FMM) framework. Notably,
under conditions of low class separation, the one-step
estimator outperforms the three-step estimator during
the class enumeration process when relevant covari-
ates are included, and demonstrates greater robustness
to misspecification of DEs (i.e., ignoring and overfit-
ting the DEs; Wang et al., 2023).

Regarding the accuracy of parameter estimates, the
one-step estimator yields substantial bias in estimated
covariate effects when the DEs are ignored in the
LCA and the RMM (Janssen et al., 2019; Kim et al.,
2016). In addition, when GMMs include numerous
covariates for exploratory purposes, the one-step esti-
mator can have convergence issues and local maxima
due to the complexity of the likelihood function
(Hipp & Bauer, 2006; Vermunt, 2010).

The proposed two-step estimator

A recently developed two-step estimator proposed for
LC models (Bakk & Kuha, 2018) can be an alternative
to the one-step and three-step estimators. In the two-
step estimator, the measurement and structural mod-
els are estimated separately, which is similar to the
three-step estimator. In step one, the covariates are
excluded and only the measurement model is esti-
mated. In step two, all the parameters of the measure-
ment model are fixed at their estimated values from
step one, and only the parameters of the remaining
structural model are estimated conditioning on the
step-one measurement model. Compared to the three-
step estimator, the two-step estimator avoids introduc-
ing classification errors as in the classification step of
the three-step estimator while showing comparable
computational efficiency and conceptual advantage.
Moreover, the two-step estimator can flexibly model
the DEs from covariates to concerned indicators,
which is recommended for estimating the single-level
and multilevel LCA with external variables
(Asparouhov & Muthén, 2014; Bakk et al., 2022; Bakk
& Kuha, 2018). Since the measurement model is fixed
when estimating the structural model, the two parts of
the model do not directly affect each other, which
allows the two-step estimator to be more robust than
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the one-step estimator when the DEs are ignored,
which have been implemented in many mixture mod-
els, such as in the latent markov model and the multi-
level LCA (Di Mari et al., 2023; Di Mari & Bakk,
2018). However, this approach has not yet been
extended to GMMs with more complex measurement
models that involve both continuous and categorical
latent variables. When covariates with DEs are
included in GMM, its robustness to misspecification—
defined here as either omitting or overfitting the
DEs—has not been comprehensively evaluated with
regard to bias and efficiency of parameter recovery.

Given the aforementioned problems on the one-
and three-step estimators for GMMs as well as the
flexibility of the two-step method for modeling covari-
ates and its robustness to misspecification, we propose
to extend the two-step estimator for the LCA to the
context of GMMs with covariates. Our method is
motivated by Asparouhov and Muthén (2014), who
proposed the three-step estimator in GMMs and
Vermunt and Magidson (2021a) proposed a modeling
strategy for the three-step estimator to account for
DEs in LC models. Assume we know the possible
covariates with DEs. The proposed two-step estimator
here separately estimates the measurement and struc-
tural models. In step one, we include the DEs of cova-
riates in the measurement model. Note that, to
account for the overestimation of the DEs caused by
ignoring the association between the latent class vari-
able and covariates (Vermunt & Magidson, 2021a), we
model not only the covariate effects on growth factors
but also their effects on class membership in the step-
one model. In step two, we estimate the structural
model with all the interested covariates affecting class
membership, conditioning on the step-one model that
also includes the covariates with DEs on the latent
intercept and slope. Specifically, the regression param-
eters of the concerned covariate effects on growth fac-
tors (i.e., the DEs) are fixed, while its effects on class
membership are re-estimated at step two, to ensure
obtaining the correct partial regression coefficients
when incorporating covariates that solely predict class
membership, in line with the recommendations of
Vermunt and Magidson (2021a). In addition, we also
propose to extend the approach (Vermunt &
Magidson, 2021a) of three-step estimator for modeling
DEs on the observed indicators in LCA to latent vari-
ables in the context of GMM.

In this paper, we introduce the two-step estimator
to the context of GMMs and compare the efficiency
and reliability of the proposed two-step estimator to
the one-step estimator and three-step estimator, in

terms of the accuracy of regression parameter esti-
mates and coverage rates. We also examine the
robustness of these estimators against misspecification
of the covariate effects. Two different ways of misspe-
cification are used, namely (1) we ignore the DEs
from covariates to growth factors, and (2) we incor-
rectly include the DEs on growth factors.
Additionally, we also inspect the Type I error rate for
models that misspecify the effects between covariates
and growth factors.

The remainder of this paper is structured as fol-
lows. First, we present the unconditional GMMs and
GMMs incorporating covariates, and various estima-
tors in estimating GMMs are given, including the
one-step, the proposed two-step, and the three-step
estimators. Then, we evaluate the performance of the
proposed two-step and the competing one- and three-
step estimators via extensive simulation studies. We
apply the proposed two-step estimator to a real data-
set from The China Health and Retirement
Longitudinal Study (CHARLS; Zhao et al., 2013). The
final section is a discussion of the presented results.

Model specification
The specification of GMMs

GMMs extend the LCM by relaxing the assumption of
a single population. Assuming we only have one item

at each time point, we first describe the unconditional
LCM, which can be defined as

y; = An; + €, (1)

where y; is a T x 1 vector of repeated measures
observed for individual i (i=1,2,...,N), T is the
number of time points, where n; is a M x 1 vector of
latent growth factors, M is the number of growth fac-
tors (e.g., for specifying a linear trajectory, M equals 2
and indicates the latent intercept 5,; and latent slope
#,;-), for capturing individual variation from the aver-
age growth trajectory. Finally, €; is a T x 1 vector of
time-specific residuals. A is the T x M factor loading
matrix with fixed coefficients to predetermine the
functional form of the growth trajectory. For a linear
trajectory with equally spaced time intervals, A can be
set to

1 0
A= 1 1 2)
1
1 T-1
In the unconditional LCM, 1, can be written as:
N =a+g, 3)



where o is an M x 1 vector of growth factor means
and {; is an M x 1 vector of growth factor residuals.
Under assumptions of independence and multivariate
normality, € ~ N(0,0), and {; ~ N(0,¥), where ©
is a T x T variance-covariance matrix of time-specific
residuals and W is an M x M variance-covariance
matrix of growth factors. The probability density
function f of y; is:

f(yi) ~ MVN(n(0), X(8)), (4)

where pu(0) is the T x 1 model-implied mean vector
and X(0) is the T x T model-implied variance-covair-
ance matrix with vector 6 = (o, ¥,0) of estimated
parameters, given by
1) = Aa (5)
X(0) = AYA' + 0.

In GMMs, the single population assumption is
relaxed by introducing a categorical latent variable (c)
to capture heterogeneity in growth trajectories.
Therefore, when there are K distinctive latent classes
within the Eopulation, assume a vector of repeated
measures yg ) is sampled from a multivariate normal
distribution for the k,, latent class (k= 1,2,...,K).
The marginal distribution of repeated measures for all
classes, y; is allowed to be non-normally distributed,
which can be represented by a finite mixture of K
normal distributions, with the probability density
function expressed as:

K
k
) =Y mle =Rf(), ©)
k=1
with  class-specific model-implied mean vector
n(0%) = Aa®,  and variance-covariance matrix

£(0%) = AYPA + @F. The n(c; = k) is the class
proportion defining the unconditional probability of
individual i belonging to class k, where ¢; is the class
membership for individual i, and f (ygk)) presents the
class-specific probability density function. The super-
script k indicates the parameters are allowed to be
class-specific.

The class sizes 7(c; = k) are parameterized using a
multinomial logistic regression model, given by:

_ep(B))
SR exp (B))

with 7(c; =k) >0 and > p,7m(c;=k) =1, where
[iék) is the logit intercept for class k, and this param-
eter for the reference class (k=1) is standardized to
zero for identification (ﬁgl) =0).

Covariates can be incorporated into the GMMs to
predict either the class membership, or the growth

(7)

(¢ =
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factors, or both. To do so, we can extend Equation (6)
to be a conditional GMM of the form

K
i) = > nla = kx)f (k). (®)

k=1
where x; denotes a Q x 1 vector of covariates for indi-
vidual i, and Q is the number of covariates. Therefore,
the class proportion 7(c; = k|x;) become a multinomi-
nal logistic function of covariates x;, which is given by

(k) k)
(e = klx;) = Kexp (o (;XIBX ) , )
> k-1exp (B + Xiﬁih)
with 7(c; = k|x;) > 0 and S_p_, n(¢; = k|x;) = 1. And
where B is a Q x 1 vector of regression slopes for
class K.

The f (yl(k)|xi) is the class-specific probability dens-
ity function conditioning on x;. The model-implied
class-specific mean vector p(8%) and variance-
covariance matrix Z(B(k)) can be expressed by

n(0®) = Aa® + Ar®x
2(0X) = A(PH + TWOr*®HA’ + @M.

(10)

When there are Q covariates predicting the growth
factors, @ is a Q x Q variance-covariance matrix of x;,
and where T'® is the M x Q matrix of coefficients
between the growth factors and covariates in class k.

The estimation of GMMs by maximizing the log-
likelihood function typically employs the expectation-
maximization (EM) algorithm (Dempster et al., 1977).

For illustration, along with the example in
Figure 1, assume we have two covariates, x; and x,,
where x; only predicts the class membership and x,
predicts both class membership and the growth fac-
tors (i.e., the latent intercept and slope for linear tra-
jectory). Thus the B;k) can be expressed as ﬂfff) and
ﬁff:), representing the logistic regression coefficients
for x; and x, on the latent class variable resEectively.
And the T'® can be extended to y§k> and yg >, repre-
senting the coefficients of x, on the latent intercept
and slope in Class k respectively. As we consider a
linear growth trajectory, the a® can be extended as
the mean of latent intercept océk> and slope ocgk) for
class k. The ¥ can be expressed as

k
¥ = (‘/’égi o )
lpl() lpll

where l,bgf)), wﬁ’f}, and wi’j) are the residual variances
of the latent intercept and slope and the residual
covariance of both growth factors for class k, respect-
ively. All parameters in 0, that need to be estimated
are:
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(k) (k) o (k) p(k) ﬁ(k) B
x

k
9full*{% »°‘1 )71 »Vs "/’00»‘/’10» 11> Po > .562>’n(2) -

R .,n(K)}.
(11)

In what follows, for all proposed estimators, we use
the standard Hessian-based standard error estimates
as provided by standard software (Vermunt &
Magidson, 2021b).

Estimation methods

This section presents the one-step, the proposed two-
step, and the three-step estimators for estimating the
growth mixture models (GMMs) with covariates
defined in the previous section. For simplicity, we use
the GMM with covariates presented in Figure 1 as an
example. Note that both covariates x; without DEs
and x, with DEs can be extended to a vector of cova-
riates in more complex settings.

The one-step estimator

The one-step FIML estimator estimates all parameters
(defined in Equation (11)) of the measurement and
the structural models at once (B. Muthén, 2004).
When estimating GMM with covariates x; and x,, the
EM algorithm is used to maximize the log-likelihood
function LOgLFIML(eful]) for f(Yi|x1i’ Xz,‘)t

LogLemr (85

N K
= Z log <Z n(c; = k|x1,-,xz,-)f(y,(»k)Ixzi,ll(ﬂfuzz),z(efuu)))
P

k=1
(12)

The proposed two-step estimator

Here, we apply the two-step estimator (Bakk & Kuha,
2018) on the GMMs with covariates, and model the
DEs of covariates on the growth factors following the
recommendation of Vermunt and Magidson (2021a)
on the DEs modeling strategy for LCA.

Step-one. In step one of the proposed two-step esti-
mator, we first estimate the class-specific parameters
and class proportions for the GMM with covariates
specified before. Note that we include covariate with
DEs (i.e., x,) at step one, containing both the con-
cerned DEs on growth factors and the effect on class
membership, in line with the recommendations of
Vermunt and Magidson (2021a). The estimated
parameters in step one are as follows:

oo>‘//10>‘//11,ﬁ0 ’sz’ ,...,n(K)}

(13)

k
951 = {O{é ,al ),V§ >)/S 5

The log-likelihood function of the step-one model
can be specified as follows:

LogL(0y)

— zi: (ZK:H = k|X2; (ng)|x2ixu(esl>’z(931>>>

k=2
(14)

Step-two. In step two of the proposed two-step esti-
mator, we examine the association between covariates
and class membership by estimating the regression
coefficients in Equation (9), and re-estimate the class
proportions conditioning on x; and x,. Meanwhile,
the remaining parameters of the step-one model are
fixed at their estimated value, which is 651 =
{491,787 U g WY} Note that the DEs
of x, on growth factors were fixed at step-one esti-
mates (i.e, yg ),yé ), while the effect of x, on class
membership is re-estimated at step two which follows
the recommendations of Vermunt and Magidson
(2021a). Hence, the parameters that need to be esti-
mated in step two are as follows:

52 — {(ﬁ() > xl ) xz))n(Z)yn-)n(K))'ésl}' (15)

The log-likelihood function of the step-two model
can be specified as follows:

LOgL(0S2|951 = ()51) =

K

N
Z: log <Z TE(C,’ = k|x1,',x2,»)f(y§k)x2i,u(651),2(651))> .

k=1

Free(conditional on 0)Fixed (B)

(16)

Using this approach makes it possible to separate
the measurement and structural model, by replacing
the FIML approach with a model where a conditional
likelihood function is used at step two, allowing for
computational efficiency (Bakk & Kuha, 2018).

The three-step estimator

In this paper, we generalize the Vermunt and
Magidson (2021a) modeling strategy for the three-step
estimator in the presence of known DEs on the
observed indicators to the context of GMMs, in which
the DEs is on latent variables.

Step-one. The step-one model is equivalent to the step-
one model of the proposed two-step estimator, thus, the
estimated parameters 0, are obtained by maximizing
the log-likelihood function of Equation (14).



Step-two. In step-two, individuals are assigned to
latent classes based on their posterior probability of
class membership given covariate x;, which is
expressed as follows:

1(c; = ko) (57 x)
fyilx2i)

Here, we applied modal assignments, in which the
individuals are assigned to the class with the highest
posterior class probability. The posterior class assign-
ments are denoted by introducing a new categorical
variable W, which can take on the values w=
1,2,..,K. In this step, classification errors are intro-
duced and can be quantified as the posterior class
membership conditional on the true class membership
and x, Vermunt (2010), that is:

P(W =w|c =k, x;)

Lo (5, )k k k) (k
- NZ<§ £ (0 1) x Ple = Ky, )
i=1 1

k=

P(Ci = k|Yi’ le‘) = (17)

P(W = wly o)) /Ple = kb ).
(18)

Here, in contrast to the proposal from Bolck et al.
(2004), which disregarded x, in the classification error
matrix, Vermunt and Magidson (2021a) proposed to
allow the classification error matrix with elements
P(W = w|c = k,x,) to vary across the level of x,.

Step-three. The step-three model is an LC model con-
ditional on the x; and x,, with a single indicator W of
response probabilities P(W = w|c = k, x,), that is,

K
P(W =wl|x,x;) = ZP(C = k|x1,%) ZP(W = w|c
k=1 wk
= k,XZ).

(19)

In step three, we only estimate the regression coef-
ficients of the multinominal logistic function relating
W and x; and x,, that is, 05 = {ﬁ(()k),[)’i’f),ﬂg)}(kz

1,2,..,K). The 0 is obtained by maximizing the fol-
lowing log-likelihood function,

N K
LogL(0g) = Z log <Z P(W = le,x2)> (20)
i=1 w=1

For parameter estimation, we use the ML estimator
proposed by Vermunt (2010). For an extended
description of the three-step estimator, we refer to
Asparouhov and Muthén (2014), Vermunt and
Magidson (2021a), and Diallo and Lu (2017).
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Simulation settings

Three simulation studies were conducted to assess the
performance of the different estimators for the GMMs
with covariates. Specifically, we compare the com-
monly used one-step and the three-step estimators
with the proposed two-step estimator among ignored,
correctly specified, or overfitted DEs of covariates.
The efficiency and accuracy of each estimator are
examined, specifically evaluating the parameters of the
estimated covariate effects (on the LC variable and
DEs on the growth factors) and its corresponding
standard errors (SEs), in terms of the absolute bias
(AB), the mean square error (MSE), the relative effi-
ciency (SE/SD ratio), and the coverage rates (CRs) of
95% confidence interval (CI). The formulas for these
criteria can be found in Appendix A. We expect that
the estimators that specify DEs (either correctly speci-
fied or overfitted) perform better than the estimators
that ignore the DEs, and that the proposed two-step
estimator performs comparably to the one-step and
the three-step estimators with correctly specified DEs
and is more robust than the one-step estimator with
misspecified DEs.

Population models

For all three simulation studies, we sampled the data
from two-class linear GMMs with 3 observed continu-
ous indicators that directly regress on the latent inter-
cept and slope variables at each time point
(y, ~N(0,1);t =1,2,3,...,T) and with:

e Population model I: only with covariate x; predict-
ing class membership (Study 1).

e Population model II: with covariates x; predicting
class membership and x, predicting the latent
intercept (i.e., #o) only (Study 2).

e Population model III: with covariates x; predicting
class membership and x, predicting both growth
factors (i.e., 1o, 771) (Study 3)

The x, and x, are sampled from U(1,5). The popu-
lation models are visualized in Figure 2, in which we
only presented the model part of interest (ie., the
association among growth factors, LC variables, and
covariates).

The population parameters were chosen based on
both previous simulation studies and substantive
research on mixture models (e.g., Diallo et al., 2017;
M. Li & Harring, 2017; Tofighi & Enders, 2008;
Vermunt & Magidson, 2021a). Specifically, within the
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(3) population model IIT

Figure 2. Population models for the three simulation studies,
where y,(t =1,..,T) are the indicators measured at t time
point, ¢ is the LC variable, 7, is the latent intercept, and #, is
the latent slope. The x; and x, are the covariates.

(k)
Vi
class k, we assumed the repeated measures ( ) ~
k
yr
MVN(p®), 20 with
20 = A + Y0 py)A + @.

The mean vector p®) of repeated measures is
defined by a®, y®, A (as defined in Equation (2)),
and the mean of x,. The a®¥ includes the mean of
latent intercept (fxf)k>) and slope (ocgk)), notice that we
varied the oc((Jk across two classes and population mod-
els to manipulate the level of class separation, the
details are presented in the manipulated factor section.
For population models I, II, and III, the ocgk) was
defined for class 1 and class 2, as ocgl) = —0.20, agz) =
0.20. As only covariate (x,) predict 7, in population
model II, the y®) was defined as yll = 0.5, y}z) =
—0.5. In population model III, x, predicts both 7, and
n, which was defined as ¢y = (y}”,ygl)) =
(0.5,0.25), 7@ =(3,p?) = (=05, -0.25). To
focus on investigating the proper strategy for model-
ing the DEs in GMMs, we chose a medium size of the
DEs from x, for growth factors across simulation
studies.

The variance-covariance matrix (£%) of repeated
measures is defined by the ¥, ¢ (the variance of x,)
and O. For simplicity, the ¥ and ® were set to be
invariant across all classes and population models.
Specifically, the ¥ was set to

L00>'

e [ 1.00
v (4, )= (0

And the @ was fixed as a diagonal matrix with all
the elements fixed to 1.

We set the logistic regression parameters of x; and
X, on ¢ to determine the class membership (as speci-
fied in Equation (9)). Specifically, f, = —0.50 for
population models I, II, and III, and B, =0.75 for
population models IT and III. The regression intercept
(Po) of ¢ was varied across three population models to
manipulate the mixing ratio of classes and to obtain
two class size settings, namely equal and unequal
classes (see below).

Manipulated factors

According to previous simulation and applied studies
on mixture models, we manipulated the following
four factors given their important influence on the
performance of GMM, including the sample size,
the mixing ratios, the degree of class separation, and
the number of time points. Previous research showed
that the sample size, mixing ratios, and class separ-
ation are important factors of model performance in
mixture modeling in terms of the class enumeration
and parameter recovery (Asparouhov & Muthén,
2014; Diallo & Lu, 2017; L. Li & Hser, 2011; Tofighi
& Enders, 2008; Vermunt, 2010; Wang et al., 2023).
In addition, the performance of the three-step and
two-step estimators highly depends on the class separ-
ation and sample size (Bakk & Kuha, 2018; Di Mari
et al., 2023; Vermunt, 2010). Moreover, the number of
time points also plays a vital role in ensuring the stat-
istical power in GMM (B. O. Muthén & Curran,
1997).

For the manipulated factors in the three simulation
studies, (1) two different sample sizes are chosen:
N=500 and 1000. (2) Two levels of mixing ratios
were applied. (3) Two levels (medium and high) of
class separation conditions were applied by tuning the
oc(()k) (For details, as shown in Appendix B). The low
level is not considered, as this condition is not recom-
mended for step-wise estimators (Vermunt, 2010).
The entropy value was used to assess the accuracy of
the generated class separation. The entropy value
ranged from 0.52 to 0.90 for the medium separation
condition and from 0.93 to 0.99 for the high separ-
ation condition, averaged from all simulated data sets.
(4) We manipulated the number of time points (T) to
3 and 6 across simulation studies. The chosen param-
eters of manipulated factors are typically used in sub-
stantial research and simulation studies in the
framework of GMMs.



Data generation and analytical procedure

The three simulation studies consisted of 16 designed
conditions (2 levels of sample sizes x 2 levels of mix-
ing ratios x 2 levels of class separation x 2 levels of
time points) for each population model, 48 conditions
in total. We generated 100 replications for each condi-
tion, resulting in 4800 datasets for 3 simulation
studies.

In Study 1, the population model I only included
covariate x; without DEs, we thereby compared the
one-step estimator with x; to the two-step and the
three-step estimator without x; in the step-one model,
while incorporating x; in step-two model of the two-
step estimator and step-three model of the three-step
estimator. Hence, we employed 3 models to analyze
the simulated datasets at each condition.

In Studies 2 and 3, we included covariates x;, also
x,, that have DEs on the latent intercept for popula-
tion model II and on both growth factors for popula-
tion model III. We compared the performance of
three alternative estimators in the presence of DEs.
For each estimator, we evaluated the impact of three
different specifications for the DEs of x,: ignoring the
DEs (Specification A), specifying the DEs on the
latent intercept only (Specification B), and specifying
the DEs on the latent intercept and slope
(Specification C). Note that the correct specification
and misspecification of DEs vary depending on the
population model of different studies. For study 2,
specification B correctly specified DEs, in contrast to
study 3, where specification C is correct. In total, each
simulated dataset at each condition was analyzed
using 9 models (3 estimators x 3 specifications).

Specifically, 3 one-step estimators with varying speci-
fications of DEs were built, which were identical to the
three population models, 3 two-step, and 3 three-step
estimators, with varying specifications of the DEs at their
equivalent step-one models, the corresponding step-wise
models are presented in Figure 3a and Figure 3b. All
simulated data sets were generated and estimated using
LatentGOLD version 6.0 Vermunt and Magidson
(2021b), and results were analyzed in R. The
LatentGOLD syntax and R code can be found in the
author’s GitHub repository .

To prevent the label-switching problem (Tueller
et al.,, 2011), we provided starting values® for all mod-
els across three simulation studies in LatentGOLD.

'See https://github.com/Yuqi-psy/Two-step-GMM.git.

’The starting values are the parameters of population models. A
robustness check without specifying the starting values was run, and the
results are consistent with our simulation results. The details can be
found in the supplementary materials.
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Results

Study 1: Population model | with covariate effect
only on class membership

In Study 1, we compared the performance of the dif-
ferent estimators on estimating the GMMs with cova-
riate x; predicting the class membership only. Table 1
presents the absolute bias (AB) and 95% CI of CRs of
parameter f3, for the three estimators under the 6
time points conditions with varying sample sizes, lev-
els of class separation (measured by the average of
entropy), and mixing ratios. The results indicate that
all three estimators performed comparably well in the
6 time points conditions, resulting in negligible par-
ameter AB and acceptable CRs over the 8 simulation
conditions (2 sample size x 2 class separation X 2
mixing ratio). A similar pattern of results was
obtained in the 3 time points conditions as well (see
Appendix C).

Figure 4 displays the boxplots for relative efficiency
(SE/SD ratios) with different time points, averaged
over the other 3 design factor conditions (i.e., mixing
ratio, class separation, and sample size). In the 3 time
point conditions, the SE/SD values are close to 1 over
all three estimators, indicating that the standard error
(SE) estimators are similar to the sampling variance
regardless of the sample sizes, levels of class separ-
ation, and mixing ratios. In the 6 time point condi-
tions, all three estimators overestimate the SEs.
Specifically, the proposed two-step estimator per-
formed comparably to the one-step estimator, and
better than the three-step estimator, the latter yields a
larger magnitude of SEs overestimation than the other
two estimators. The SE/SD values at each simulated
condition are in Appendix E. We also inspected the
mean square value of the 8, , and the results are simi-
lar to the AB (see Appendix D).

Study 2: Population model Il with covariate effects
on the class membership and on the latent
intercept

In study 2, data were generated from the population
model II with a DE from covariate x, to the latent
intercept, and effects of covariates x; and x, on the
LCs. We inspected the estimated parameter bias (AB),
coverage rates (CRs), relative efficiency (SE/SD ratios),
and the type I error rates (i.e., the probability of
incorrectly accepting a significant effect of x, on the
latent slope), to evaluate the performance of the one-
step, the two-step, and the three-step estimators in the
presence of DE.


https://doi.org/10.1080/00273171.2025.2557275
https://doi.org/10.1080/00273171.2025.2557275
https://doi.org/10.1080/00273171.2025.2557275
https://github.com/Yuqi-psy/Two-step-GMM.git.
https://doi.org/10.1080/00273171.2025.2557275
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Step-one A

Step-two A

Step-one B

Step-two B

Step-two C

(1) Two-step A

(2) Two-step B

(3) Two-step C

(a) The two-step estimator

(<)
O D ()

Step-one A

®

Step-two A

Step-three A

/=

Step-one B

Step-two B

Step-three B

W

Step-one C

O

Step-two C

Step-three C

(1) Three-step A

(2) Three-step B

(3) Three-step C

(b) The three-step estimator

Figure 3. The step-wise models for the two-step and the three-step estimators in simulation studies 2 and 3, with three different
specifications of the direct effects from x, on c. The dashed lines for the two-step approach represent the parameters on this path
that were fixed at the step one estimates. The w is the classification LC variable in the three-step estimator.

Table 2 presents the AB and 95% CI of CRs for
covariate effects on LCs (i.e., parameters ff, and f,))
in the 6 time points conditions with varying sample
sizes, levels of class separation, and mixing ratios. For
the B,,, when we ignored the DEs (specification A),
all three estimators show bias, especially when the
classes are poorly separated. Specifically, the two-step
and the three-step estimators performed comparably,
with the AB range from 0.03 to 0.26 and CRs not
reaching the nominal level. Not surprisingly, the one-
step estimator was the most sensitive estimator to
misspecification, with the largest AB range from 0.05
to 143 and the lowest CRs. Furthermore, the

performance of all three estimators systematically
improved when the DEs were specified (either specifi-
cation B or C), yielding negligible AB (range from
0.00 to 0.01) and acceptable CRs across simulation
conditions.

Next, zooming into the different simulation condi-
tions, we see that all three estimators performed better
as the classes become more separate, while they are
less affected by the sample size and the mixing ratio.
When the DEs were specified (specification B or C),
the three-step and the two-step estimators were more
sensitive to the level of class separation than the one-
step estimator. As shown in Table 2, the CRs of these



Table 1. The absolute bias (95% confidence interval of coverage rates) values over 100 replications for the regression coefficient of the latent class variable f, , in 6 time points

simulation conditions for study 1.

Mixing ratio = 0.30/0.70

Mixing ratio = 0.50/0.50

Moderate entropy High entropy Moderate entropy

High entropy

N =500

1000

N=

N =500

1000

N=

N =500

1000

N=

N =500

1000

N=

By, = —0.50
One-step
Two-step

0.04 (0.92-0.99)
0.01 (0.92-0.99)
0.01 (0.95-1.00)

0.00 (0.89-0.98)
0.00 (0.89-0.98)
0.01 (0.93-0.99)

0.01 (0.92-0.99)
0.01 (0.92-0.99)
0.01 (0.92-0.99)

0.00 (0.89-0.98)
0.00 (0.89-0.98)
0.00 (0.90-0.98)

0.04 (0.88-0.97)
0.02 (0.90-0.98)
0.02 (0.95-1.00)

0.00 (0.93-0.99)
0.00 (0.95-1.00)
0.00 (0.96-1.00)

0.00 (0.90-0.98)
0.00 (0.90-0.98)
0.00 (0.90-0.98)

0.01 (0.90-0.98)
0.01 (0.90-0.98)

0.01 (0.92-0.99)
Note. One-step is the one-step estimator. Two-step is the proposed two-step estimator. Three-step is the three-step estimator. N is the total sample size.

Three-step
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Six time points

One-step } — —
Two-step u» .

Three-step

Three time points

Models

|
|

09 1.0 11 12 1309 1.0 11 12 13
SE/SD

Figure 4. Boxplots of relative efficiency for the regression
coefficient of the latent class variable (f,,) averaged over 8
simulation conditions for study 1. SE/SD is the ratio of standard
error versus standard deviation. One-step is the one-step esti-
mator. Two-step is the proposed two-step estimator. Three-
step is the three-step estimator.

two estimators are substantially reduced but still pro-
vide unbiased estimates. For the 8, which has no DE,
all three estimators performed systematically well with
AB smaller than 0.03 and CRs close to the nominal
level within the CI, across 8 conditions and 3 specifi-
cations, except for the one-step estimator with ignored
DEs (specification A) under a moderate entropy and
equal class size conditions.

Figure 5 depicts the boxplots for SE/SD ratio values
reported at each replication for the , and f,, aver-
aged over 8 simulation conditions. For the f, , all
estimators tend to underestimate the SEs over differ-
ent time points conditions. All three estimators with
specified DEs (specifications B or C) performed better
than estimators with ignored DEs (specification A),
with less underestimation of SE values. Specifically,
the two-step estimator provides slightly more underes-
timated SEs than the one-step and the three-step esti-
mators. Not surprisingly, the one-step estimator with
ignored DEs (One-step A) substantially underesti-
mates the SEs. When we specified the DEs (specifica-
tions B or C), the most efficient estimator was the
one-step, followed closely by the three-step and the
two-step estimators, the stepwise estimators were less
efficient with underestimating the SE values, especially
in the moderate class separation conditions (for the
detailed SE/SD in each simulated condition, we pre-
sented in Appendix E). For the f3, , the one-step and


https://doi.org/10.1080/00273171.2025.2557275
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Figure 5. Boxplots of relative efficiency for regression coeffi-
cients of the latent class variable (f,, and f,,) averaged over
8 simulation conditions and 100 replications for study 2. SE/SD
is the ratio of standard error versus standard deviation. The
bold models are the estimators with correctly specified direct
effects in study 2 (specification B).

two-step estimator performed comparably well pro-
ducing efficient SE estimates except for the one-step
with ignored DEs (specification A) over different time
points conditions. The three-step estimator tends to
slightly overestimate the SE over three specifications
still having the means of SE/SD less than 1.15.

For the latent intercept coefficients y, in 6 time
points condition, as we can see, all estimators with
modeled DEs (specification B or C) performed system-
atically well with approximately unbiased parameter
estimates across all 8 conditions in Table 2, in terms of
the CRs of all three estimators are close to 95% across
simulation conditions, except for having a slight under-
coverage in the moderate entropy or smaller class size
conditions. In Figure 6, we display the boxplots for SE/
SD reported at each simulation condition for y; aver-
aged over the two classes. All estimators with specified
DEs (specifications B or C) were approximately
unbiased under all time point conditions. The results
of the AB and CRs for the f,, f,,, and y; in 3 time
points conditions were similar (see Appendix C).

Table 3 shows the Type I error rates of the yg for
estimators with misspecified DEs under the 6 time
points conditions over 100 replications. As the two-step
and the three-step estimators share the same step-one
model, we present the results of the step-one model
(Step-one C) and the one-step estimator (One-step C)
when the DEs are misspecified (specification C). The

MULTIVARIATE BEHAVIORAL RESEARCH 13
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Figure 6. Boxplots of relative efficiency for the regression
coefficient of latent intercept variable (y,) averaged over 2
classes, 8 simulation conditions, and 100 replications. SE/SD is
the ratio of standard error versus standard deviation. The bold
models are the estimators with correctly specified direct effects
in study 2 (specification B).

results show no considerably inflated Type I error rates
across the conditions. The type I error rates are close to
the expected value of 0.05 except in the unequal mixing
ratio, large sample size, and well-separated classes con-
ditions. The type I error rates of the yg in 3 time points
are similar (as shown in Appendix C). We also
inspected the mean square value of all interested
parameters, the results are in line with the AB, CRs,
and SE/SD values as shown in Appendix D.

Given the possibility of model misspecification in
the applied settings, we ran a robustness check to
assess the model performance when we not only mis-
specify the specific location of DEs but also the cova-
riates with DEs, namely, we model the DEs on the
latent intercept and slope from the covariates that
only predict the class membership. The results are
consistent with study 2, the two-step and three-step
estimators are more robust than the one-step estima-
tor when models are misspecified. We refer to the
robustness check 2 in the supplementary material for
more information.

Study 3: Population model Ill with covariates
effects on class membership and latent intercept
and slope

In study 3, data were sampled from the population
model III where x; affects the LC membership, while
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Table 3. The type | error rate values over 100 replications for regression coefficients of the latent slope (ys), in 6 time points con-

ditions for study 2.

Mixing ratio = 0.50/0.50

Mixing ratio = 0.30/0.70

High entropy

Moderate entropy

High entropy Moderate entropy

N=1000 N =500 N=1000 N =500 N=1000 N =500 N=1000 N =500
One-step C 0.07 0.07 0.05 0.07 0.10 0.05 0.03 0.07
Step-one C 0.07 0.07 0.05 0.07 0.10 0.05 0.03 0.09

Note. One-step C is the one-step estimator model of the direct effects on both growth factors (specification C). Step-one C is the step-one model of the
two-step and three-step estimators with specification C. N is the total sample size.

x, predicts the LC membership and also has DEs on
the latent intercept and slope factors. Therefore, speci-
fication C is the correct way to specify the DEs. Table
4 presents the AB and 95% CI of the CRs for covari-
ate effects on LCs (i.e., the f, and f, ) under the 6
time points conditions. The results were similar to
study 2. For the f,, compared to ignoring the DEs
(specification A), the performance of all three estima-
tors systematically improved when we specified the
DE:s (specification B and C).

Concerning the design factors, the performance of
all three estimators improved in well-separated class
conditions, independent of the sample size and mixing
ratio. Note that, when the DEs are misspecified (speci-
fication B), all three estimators tend to overestimate
the ., under conditions of moderate class separation
and unequal mixing ratio conditions, in terms of AB
range from 0.11 to 0.14 and lower CRs. For f, , akin
to results in study 2, all estimators performed system-
atically well in each condition, with negligible bias
ranging from 0.00 to 0.04, and the nominal level of
CRs falls into the CI. The results of the 8, and f, in
3 time points were similar (see Appendix C).

Figure 7 displays the boxplot for SE/SD ratios
reported at each replication in study 3. The results
were averaged over the sample size, the mixing ratio,
and the class separation conditions. We can observe
similar results as in Study 2. Over 3 and 6 time points
conditions, all estimators tend to underestimate the
SE/SD values of f3, except for the one-step estimator
with correctly specified DEs (specification C). When
we specify DEs, the one-step estimator performed the
best, closely followed by the three-step and the two-
step estimators. For the f, , all estimators were effi-
cient except for the three-step estimator that slightly
overestimates the SE values in 3 time points condi-
tions (for the detailed SE/SD in each simulated condi-
tion, see Appendix E).

For the y;, the results in Table 4 show that all esti-
mators with correctly specified DEs (specification C)
performed systematically better than estimators with
misspecified DEs (specification B) with regard to
approximately unbiased parameter estimates and

nominal level of CRs over the sample size, the class
separation, and the mixing ratio conditions. The
results for the 3 time points are presented in
Appendix C. Similar results were observed from the
SE/SD values reported at each replication averaged
over 8 simulated conditions and 2 classes in Figure
8a, The estimators with specification C were more
efficient concerning SE estimates.

Next, for the yg, we can see that all three estimators
performed well with unbiased parameter estimates
and the CRs reaching the nominal level for all simu-
lated conditions and classes. For the SE estimators of
ys, as shown in Figure 8b, all estimators with specifi-
cation C performed well and tend to slightly under-
estimate the SE, over 8 simulated conditions and 2
classes. The results at 3 time points are presented in
Appendix C. We also inspected the mean square value
of all interested parameters, the results were in line
with the AB, CRs, and SE/SD values as shown in
Appendix D.

Real data example

In this paper, we applied all three estimators with dif-
ferent specifications of DEs on a real data example (9
models in total), which came from The China Health
and Retirement Longitudinal Study (CHARLS; Zhao
et al., 2013). This study focuses on the Chinese popu-
lation aged over 45 years, understanding the socioeco-
nomic determinants and outcomes of aging. CHARLS
adopted a four-stage probability sampling procedure
to ensure its nationally representative sampling. The
baseline data were collected from subjects by personal
interview in 2011, and the second, third, and fourth
data waves were collected in 2013, 2015, and 2018
(Zhao et al,, 2014). This analysis uses data or informa-
tion from the Harmonized CHARLS dataset and
Codebook, Version D, as of June 2021 developed by
the Gateway to Global Aging Data. The development
of the Harmonized CHARLS was funded by the
National Institute on Aging (R01 AGO030153, RC2
AGO036619, R03 AG043052). For more information,
we refer to their website.’


https://doi.org/10.1080/00273171.2025.2557275
https://doi.org/10.1080/00273171.2025.2557275
https://doi.org/10.1080/00273171.2025.2557275
https://doi.org/10.1080/00273171.2025.2557275
https://doi.org/10.1080/00273171.2025.2557275

wn
—

‘|eAISIUI DUSPHUOD 95G6 SY} UIRIUOD 10U Op 18yl mco:_vcou 13|21 sIvquINU pjoq dy| “dzIs

Adoaua a1esapopy

Adonus ybIH

Adoanua a1esapopy

Adonua ybIH

0£°0/0€°0 = ones buxin

05°0/05°0 = ones buxip

M sjdwes [e101 3yl SI Ny "z pue | sse|) ul ado|s 1ua1e| 3yl JO SIUSIDIYS0D uoissaiHal a1 aue @ x pue AW\( "7 pue | sse|) ul 1ds2is1ul 1Udle| AY) JO SIUBIDIYI0D UoIssaIHal 3yl aue @; pue 6\\( "3|qelIeA SSB|D 1Ud1e| 3Y)
= 10 S1UAPIY0d UoIssaBal ate g pue *¢ ) pue g suonedypads yum siolewnss dals-aalyl pue nmm -OM} 93U} JO S|9pOW du0-dals 3y} ale ) pue g auo-dais ‘A|9A1dadsal ‘) pue ‘g ‘y suonedydads Yim si0}ewilss
] days-9a1y} sy ase D dals-aaly| pue ‘g dais-aaiy] ‘y dais-aaiyl “AjPAndadsas ‘) pue ‘g ‘y suonedydads yum siojewnsa dals-oml ayl ale ) deys-om] pue ‘g deys-om] ‘y dais-om] AjpAndadsal ‘() uonedynads)
M 510108 yimolb yloq uo pue ‘(g uonedydads) 1dadialul Jus1e| 3yl uo 3g 9yl buikynads ‘(y suonedydads s3g) s1oeyd 1241p Yy buuoubi siolewnss dals-suo ayy aue ) dais-auQ pue ‘g deis-auQ ‘y dais-auQ ‘alon
S (£6'0-98°0) 00°0 (£6'0-98°0) 00°0 (86'0-68°0) LO'0 (£6'0-88°0) 00°0 (£6'0-98°0) 00°0 (00°L-56'0) 00°0 (66'0-26°0) 00°0 (86'0-68°0) 00°0 D duo-daig
Awn (£6°0-88°0) 00°0 (£6'0-98°0) 000 (86'0-68°0) L0O'0 (£6'0-88°0) 00°0 (£6'0-98°0) 00°0 (00'1-56°0) 00°0 (66'0-26°0) 00°0 (86'0-68°0) 000 D dais-auQ "
e SCo0— =
m (¥6'0-€8°0) 000 (86°0-06°0) 00°0 (86°0-68°0) 00°0 (66'0-6°0) L0'0 (86'0-68°0) L0O'0 (86'0-06°0) 00°0 (96'0-58°0) 00°0 (¥6°0-18°0) 000 ) duo- awﬁm g
= (56°0-+8°0) 00°0 (86'0-68°0) 00°0 (86'0-68°0) 00°0 (66'0-6°0) LO'0 (86'0-68°0) LO'0 (86'0-06'0) 00°0 (96'0-58°0) 00°0 (¥6°0-18°0) 000 D dais-auQ ¥
& ST0= ()¢
m (96'0-58°0) LO'0 (£6'0-98°0) 00°0 (£6'0-88°0) 00°0 (66'0-€6'0) 00°0 (£6'0-88°0) 00°0 (96'0-58°0) 00°0 (66'0-€6'0) LO'0 (£6'0-98°0) 00°0 ] mco.awym:v
5 (£8°0-1£°0) SO0 (88°0-€£°0) ¥0°0 (¥8°0-89°0) S0°0 (6£70-19°0) S0°0 (56'0-¥8°0) 90°0 (§£°0-£S°0) LOO (¥6'0-€8°0) S0°0 (€8'0-£9°0) SO0 g suo-dais
W (£6'0-98°0) LO'0 (£6'0-88°0) 00°0 (£6'0-88°0) 00°0 (66'0—-€6'0) 00°0 (86'0-68°0) 00°0 (£6'0-98°0) 00°0 (66'0-€6'0) LO'0 (£6'0-98°0) 00°0 D dais-auQ
(£8°0-1£°0) SO0 (06'0-9£°0) ¥0'0 (¥8°0-89°0) S0°0 (8£°0-09°0) S0°0 (96'0-58°0) S0°0 (9£0-85°0) £00 (56'0-¥8°0) ¥0°0 (€8'0-£9°0) S0°0 g dais-auQ "
05°0— = ()¢
(£6°0-98°0) L0O'0 (86'0-68°0) L0'0 (66'0-6°0) 00°0 (¥6'0-€8°0) 100 (86°0-06°0) 00°0 (00°L-56°0) 00°0 (£6'0-98°0) 00°0 (£6:0-88°0) 000 ) duo- awﬁm g
(££'0-65°0) ¥1°0 (15°0-2€'0) ¥1°0 (€6'0-08°0) 90°0 (z8'0-59'0) 90°0 (88'0-€£°0) £00 (09°0-0%°'0) 80°0 (¥8°0-89°0) 90°0 (6£70-19°0) SO0 g suo-dais
(56'0-v80) LO'0 (86'0-68°0) L0'0 (66'0-6°0) 00°0 (¥6'0-€8°0) L0'0 (86'0-06°0) 00°0 (00°L-56°0) 00°0 (£6'0-980) 00°0 (£6:0-88°0) 000 D dais-auQ
(££:0-6S°0) V10 (zs'0-€€°0) ¥10 (€6'0-08°0) 90°0 (18°0-19°0) 90°0 (88°0-€£°0) LOO (09°0-0%°0) 80°0 (98°0-0£°0) 90°0 (08°0-€9°0) S0°0 g dais-auQ "
050 =
(¥6°0-€8°0) 000 (£6'0-98°0) 00°0 (86'0-68°0) 00°0 (86'0-06'0) 00°0 (56'0-+8°0) 00°0 (£6'0-98°0) 00°0 (£6'0-88°0) LO'0 (00°L-56°0) 00°0 D dais- mmEhA v
(1L6'0-8£°0) LL'O (z8'0-59°0) LL'O (86'0-060) L0O'0 (86'0-68°0) L0'0 (¥6'0-18°0) €00 (£6'0-880) T0'0 (£6'0-88°0) 00°0 (00'1-56°0) L00 g dais-aa1y)
(L9°0-L¥°0) STO (ov'0-zT'0) STO (86'0-06'0) SO0 (£6'0-88°0) ¥0'0 (££70-65°0) LL'O (£5°0-8€°0) SL'O (86'0-06'0) £0°0 (€6'0-08°0) £0°0 v days-aa1y]
(26'0-6£°0) 100 (16'0-££°0) 000 (86°0-68°0) 00°0 (86'0-06°0) 00°0 (16'0-8£°0) 00°0 (S56'0-¥78°0) 000 (£6'0-980) 100 (66'0-€6'0) 100 ) dais-om]
(8£°0-09°0) ¥1°0 (65°0-6€°0) ¥1°0 (86'0-68°0) LO'0 (£6'0-88°0) LO'0 (68'0-¥£0) ¥0'0 (€6'0-08°0) 00 (£6'0-88°0) 00°0 (66'0-€6'0) LO'0 g dajs-om]
(L§°0-2€°0) 920 (9€°0-61°0) €20 (56'0-18°0) ¥0'0 (£6'0-98°0) ¥0'0 (€9°0-v¥°0) ¥1°0 (S€'0-81°0) €10 (96'0-580) €00 (96'0-58°0) ¥0°0 y dais-om|
(96'0-58°0) LO'0 (86'0-06°0) 00°0 (86°0-68°0) 00°0 (86'0-06'0) 00°0 (£6'0-88°0) 00°0 (86'0-06°0) 00°0 (£6'0-88°0) LO'0 (66'0-€6'0) LO'0 D dais-auQ
(68°0-vL°0) ¥1°0 (8£°0-09°0) ¥1°0 (86'0-06°0) L0O'0 (86'0-06°0) L0O'0 (£6'0-98°0) ¥0°0 (£6'0-98°0) T0'0 (£6'0-880) 00°0 (66°0-€6°0) L00 g days-aup
(¥0°0-00°0) 86'0 (¥0°0-00°0) S8°0 (09°0-0%°'0) 920 (65°0-6€°0) LT0 (01°0-z0°0) ¥8'L (£0°0-10°0) LL'T (56'0-+8°0) 90°0 (68°0-17£°0) 90°0 v dais-auQ -
SL0=
(86'0-06°0) LO'0 (00°L-56'0) TO'0 (£6'0-88°0) LO'0 (86'0-06'0) 00°0 (66'0-€6'0) TO'0 (66'0-6°0) TO'0 (86'0-68°0) 00°0 (00'L-56°0) LO'O D dass-aauy)
(66'0-6°0) LO'0 (66'0-26°0) €£0°0 (£6°0-88°0) L0O'0 (86'0-06°0) 00°0 (66'0-€6'0) 00 (66'0-€6'0) TO'0 (86°0-680) 00°0 (66°0-€6'0) L00 g daxs-salyy
(66'0-6°0) LO'0 (00°L-56'0) TO'0 (£6'0-88°0) TO'0 (86'0-06'0) 00°0 (66'0-€6'0) 00°0 (86'0-68°0) TO'0 (86'0-68°0) 00°0 (00'1L-56°0) L0O0 v deis-aauyl
(£6°0-98°0) 00°0 (66'0-6°0) L0'0 (£6'0-98°0) L0O'0 (86'0-68°0) 000 (66'0-€6'0) 00 (86'0-68°0) 00 (86°0-680) 00°0 (66'0-€6'0) L00 ) dais-om]
(86'0-68°0) 00°0 (66'0-6°0) £0°0 (£6'0-88°0) LO'0 (86'0-68°0) 00°0 (66'0-€6'0) TO'0 (66'0-6°0) LO'0 (86'0-68°0) 00°0 (66'0-€6'0) LO'0 g dais-om]
(66'0-6°0) 00°0 (86'0-06'0) 00 (£6°0-88°0) T0'0 (£6°0-88°0) 000 (86'0-68°0) L0O'0 (S56'0-¥8°0) L0'0 (£6'0-880) 00°0 (66'0-76°0) L0'0 v dais-om|
(£6'0-88°0) LO'0 (66'0-6°0) LO'0 (£6'0-98°0) LO'0 (86'0-68°0) 00°0 (66'0-€6'0) TO'0 (86'0-68°0) TO'0 (86'0-68°0) 00°0 (66'0-€6'0) LO'0 D dais-auQ
(86'0-68°0) L0O'0 (66'0-76°0) €£0°0 (£6'0-88°0) L0O'0 (86'0-68°0) 00°0 (66'0-26°0) 200 (66'0-6°0) L0'0 (86°0-680) 00°0 (66'0-€6'0) L0'0 g dais-aup
(86°0-06'0) 90°0 (£6'0-88°0) L0'0 (£6'0-98°0) ¥0°0 (96'0-58°0) 00 (66'0-€6'0) L¥0 (86'0-68°0) 190 (£6'0-88°0) 00°0 (66'0-6°0) 00°0 y dais-auQ xg
050— =
00S=N 000L =N 00S=N 000L =N 00S=N 000L =N 00S=N 000L =N

‘¢ Apnis Joj suonipuo) swuiod awi 9 ul ‘sajgenea 1dadisul

Judle| pue ‘adojs Judle| ‘ssepd JuSle| Y} UO Ix pue lx Jo 10941 3y} Joj suonedijdal 0pL J9A0 SaNnjeA (s3eJ 96RISA0D JO [RAISIUI SDUSPLUOD 9G6) (gY) Seiq dInjosqe dyl ‘¢ d|qel



16 Y. LIU ET AL.

‘ B B
One-step A1 1H 11—
One-step B+ ol = —{T+
One-step C+ ]+ I+ "
— {1 T |
Two-step C- 1+ 111 §
Three-step B T+ T+
é Three-step C [ I+
2 owswnl + S
One-step B1 —[D_ " _[D_
One-step C I T |3
Two-step A 10— I T &
Two-step B+ {E . — T E’
Two-step C I — — 1 E
Three-step A+ H —{TH &
Three-step B1 —ﬂj— . _{I]_
Three-step C *D]— . . {Di
0.6 0.8 1.0 12 03 0.6 0.9 12
SE/SD

Figure 7. Boxplots of relative efficiency for regression coeffi-
cients of the latent class variable (f,, and f,,) averaged over
8 simulation conditions and 100 replications for study 3. SE/SD
is the ratio of standard error versus standard deviation. The
bold models are the estimators with correctly specified direct
effects in study 3 (specification C).

Previous studies on CHARLS (Chen et al., 2024)
detected different cognitive function trajectories of
aging people with diabetes. The participants are classi-
fied as having diabetes based on their fasting plasma
glucose (FPG) >= 126mg/dl measured after at least
8h of fasting, or glycosylated hemoglobin (HbAlc) >
= 6.5% (Bai et al., 2021; Roden, 2016) at baseline. We
excluded participants with less than two follow-up
repeated measures of cognitive function and with
missing values in baseline covariates, age and educa-
tion level. Data from 1259 participants were analyzed
as part of the final sample.

For repeated measures, we selected four items to
capture two dimensions of cognitive function, namely
mental intactness and episodic memory. Specifically,
items of date naming, drawing pictures, and serial
subtracting 7 from 100 assessed mental intactness,
item scores range from 0 to 11, and items of word
recall (immediate and delayed) evaluated the episodic
memory, which scores from 0 to 10. In line with pre-
vious studies, we computed the total score of cognitive
function by summing the scores of mental intactness
and episodic memory, ranging from 0 to 21. Higher
scores reflect better cognitive function. Covariates
were also chosen and re-coded following previous
applied research. Two covariates were selected,

3See https://g2aging.org/.
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Figure 8. Boxplots of relative efficiency for the regression
coefficient of latent intercept (y; Figure 8a) and latent slope
(ys; Figure 8b) variables averaged over 2 classes, 8 simulation
conditions, and 100 replications. SE/SD is the ratio of standard
error versus standard deviation. The bold models are the esti-
mators with correctly specified direct effects in study 3 (specifi-
cation C).

including age and education level at baseline.
Education level included three categories: no formal
education, primary school, and middle school and
above. The age was divided into a young group aged
between 45 and 59, a middle group aged between 60
and 74, and an old group aged above 74.
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Table 5. Model fit statistics for the One-step and the Two-step estimators.

Log-likelihood BIC AlC AIC3 df difference VLMR p
One-step A —9378.24 18,884.96 18,792.48 18,810.48
One-step B —9325.48 18,808.00 18,694.96 18,716.96 4.00 105.51 0.00"**
One-step C —9325.37 18,836.33 18,702.74 18,728.74 8.00 0.22 0.99
Two-step A —9384.23 18,804.14 18,778.45 18,783.45
Two-step B —9339.03 18,713.75 18,688.06 18,693.06 0.00 90.39 0.00***
Two-step C —9339.66 18,715.01 18,689.32 18,694.32 0.00 -1.26 0.75

Note.One-step A, One-step B, and One-step C are the one-step estimators ignoring the direct effects (DEs; specifications A), specifying the

DE on the latent intercept (specification B), and on both growth factors (specification C), respectively. Two-step A, Two-step B, and
Two-step C are the two-step estimators with specifications A, B, and C, respectively. BIC is the Bayesian information criterion. AIC is the
Akaike information criterion. df different is the difference in the degree of freedom between the two models. VLMR is the Vuong-Lo-

Mendell-Rubin test score. *p < 0.05, **p < 0.01, **p < 0.001.

We follow the standard recommendation of Masyn
(2017) and Diallo et al. (2017) to fit an unconditional
GMM during the class enumeration process. A two-
class model was selected in terms of fit measures
(Bayesian information criterion [BIC]=19,328.23,
Vuong-Lo-Mendell-Rubin test [VLMR] =91.18,
p <0.01; as shown in Appendix F). The class sizes of
the two latent classes are close, and the specific item’s
score of the two-class model can be found in
Appendix F. We labeled the first class as a moderate-
decrease class, with a low cognitive function score at
baseline and gradually decreased in the following
waves. The second class, labeled high-stable, had a
high cognitive function at baseline and the function
score remained stable. Note that a three-class model
was favored in previous literature (Chen et al., 2024).
Here, we chose a more parsimonious model for illus-
tration purposes.

To identify the existence of the DEs from covari-
ates to growth factors, we follow the strategy of
Masyn (2017) on detecting DEs in LCA. Thus, we
estimated a two-class GMM that specified all the
potential covariate effects on the latent class variable
and growth factors by using the one-step estimator.
The results revealed that the education level signifi-
cantly impacts the intercept of cognitive function tra-
jectories and class membership, while age only
impacts class membership. Note that, as there are no
optimal methods in detecting DEs in the GMM, we
adopted the commonly used method (Masyn, 2017) in
the LCA for illustration in this section. In this paper,
we focus on the accuracy of parameter recovery and
assume the covariate with DEs is prior knowledge.
Developing methods for detecting DEs in the GMM
remains an important direction for future research.

After identifying the latent classes, we extended the
unconditional GMM by incorporating baseline covari-
ates, which were estimated by using three estimators
with three different specifications. For all three esti-
mators, we ignored the DEs in specification A, mod-
eled the DEs from the education level on the latent
intercept in specification B, and modeled the DEs

from the education level on both the latent intercept
and slope in specification C. The effect of education
level and age on the latent class variables was modeled
across all specifications. As shown in Table 5, we pre-
sent the model comparison of the one-step and the
two-step estimators with varying specifications.
Compared to estimators with specification A, a signifi-
cant decrease in the log-likelihood value can be
observed from both estimators with specification B,
which is also reflected in other fit measures, e.g., BIC,
AIC, and AIC3. Moreover, there is no significant
improvement in model fit between estimators with
specifications B and C, in terms of the presented fit
measures. Note that we can not compare the three-
step estimator as the models with varying specifica-
tions are not nested.

Next, we focused on the estimated regression coef-
ficients of covariates on latent class variables for all
estimators with different specifications, as shown in
Table 6. The education level has a significant effect on
class membership with all three estimators. As we
applied effect coding on both covariates, participants
with an education level of middle school and above
tended to belong to a high-stable class compared to
participants with the average education level, with
higher baseline cognitive function and remaining sta-
ble across all waves. In contrast, participants with no
formal education tend to belong to a moderate-
decrease class compared to participants with the aver-
age education level, with lower baseline cognitive
function and gradually decreasing cognitive function.
For the one-step, the two-step, and the three-step esti-
mators, the effects of education level are similar, and
the effect of education level decreased but was still
significant when we modeled DEs. Age has a signifi-
cant effect on class membership with all three estima-
tors. Specifically, compared to participants with
average age, participants aged over 75 tend to belong
to a moderate-decrease class with lower cognitive
function over time, and younger participants tend to
belong to a high-stable class. Using all three
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Table 6. The Estimated regression coefficients (standard error) of the education level and age on the latent class variable using

different estimators with varying specifications of direct effects.

Education level Age

Models No formal education Primary school Middle school and above 45 -59 60 — 74 >=175
One-step A —1.75"* (0.32) 0.06 (0.17) 1.69* (0.22) 0.40* (0.19) —0.14 (0.11) —0.54"* (0.12)
One-step B —0.75"* (0.20) 0.07 (0.15) 0.69"** (0.17) 0.47** (0.17) 0.10 (0.10) —0.58"* (0.11)
One-step C —0.71"* (0.25) 0.05 (0.21) 0.66™* (0.22) 0.48"* (0.17) 0.11 (0.10) —0.58** (0.12)
Two-step A —2.39" (0.80) 0.37 (0.41) 2.02"** (0.42) 0.41* (0.19) 0.14 (0.12) —0.55"* (0.13)
Two-step B —0.99"** (0.22) 0.07 (0.13) 0.91"** (0.13) 0.40* (0.17) 0.05 (0.11) —0.46™* (0.13)
Two-step C —0.52"** (0.09) —0.12 (0.08) 0.64** (0.09) 0.30 (0.10) —0.01 (0.09) —0.29** (0.10)
Three-step A —2.31"** (0.83) 0.20 (0.45) 2.11%* (0.55) 0.37 (0.27) 0.17 (0.16) —0.54** (0.18)
Three-step B —0.97* (0.40) 0.05 (0.22) 0.92*** (0.25) 0.40 (0.34) 0.05 (0.20) —0.44* (0.23)
Three-step C —0.51"* (0.17) —0.13 (0.13) 0.65"** (0.15) 0.29 (0.28) —0.01 (0.17) —0.28 (0.18)

Note. One-step A, One-step B, and One-step C are the one-step estimators ignoring the direct effects (DEs; specifications A), specifying the DE on the latent
intercept (specification B), and on both growth factors (specification C), respectively. Two-step A, Two-step B, and Two-step C are the two-step estimators
with specifications A, B, and C, respectively. Three-step A, Three-step B, and Three-step C are the three-step estimators with specifications A, B, and C, respect-

ively. “p < 0.05, **p < 0.01, **p < 0.001.

Table 7. The estimated regression coefficients (standard error) of education level using different
estimators with varying specifications of DEs on latent intercept and slope variables.

Education level

Models No formal education Primary school Middle school and above
Latent intercept variable

High-stable

One-step B —1.78"** (0.26) 0.04 (0.23) 1.72** (0.38)
One-step C —1.76"** (0.29) 0.05 (0.28) 1.717* (0.42)
Step-one B —4.77" (0.48) 1.76 (0.27) *** 3.00%* (0.25)
Step-one C —4.05"* (0.44) 1.46 (0.28) *** 2.60*** (0.23)
Moderate-decrease

One-step B —0.93 (0.55) —0.16 (0.28) 1.09"** (0.31)
One-step C —0.96 (0.58) —0.16 (0.30) 1.13* (0.32)
Step-one B —0.10* (0.39) —0.07 (0.28) 1.07* (0.45)
Step-one C —0.56 (0.45) —0.28 (0.32) 0.84 (0.48)
Latent slope variable

High-stable

One-step C —0.05 (0.13) 0.01 (0.11) 0.05 (0.18)
Step-one C —0.36 (0.21) 0.14 (0.92) 0.22* (0.10)
Moderate-decrease

One-step C —0.03 (0.28) 0.02 (0.15) 0.01 (0.16)
Step-one C —0.12 (0.18) —0.03 (0.12) 0.15 (0.19)

Note. One-step B and One-step C are the one-step estimators specifying the DE on the latent intercept (specification B),
and on both growth factors (specification C), respectively. Step-one B and C are the step-one models of the two-step and
three-step estimators with specifications B and C. *p < 0.05, **p < 0.01, ***p < 0.001.

estimators with varying specifications of DEs, the
same overall conclusions are reached.

Table 7 presents the regression coefficients of cova-
riates estimated by different estimators with varying
specifications of DEs on latent intercept and slope
variables. The education level has a significant effect
on the latent intercept in the high-stable class for all
three estimators. Within the high-stable class,
Participants with no formal education tend to have
lower cognitive function at baseline. For both classes,
participants with education levels of middle school
and above tend to have higher cognitive function at
baseline. The estimated regression coefficients of edu-
cation level on latent intercept are not significant,
except for the coefficient estimated by the two-step
and the three-step estimators at the education level of
middle school and above in the high-stable class. And
the estimated regression coefficients are larger using
the two-step and the three-step estimators than the

coefficients estimated by the one-step estimator. In
general, there is no significant difference in the
growth rates of cognitive function trajectory for par-
ticipants with varying education levels across the two
classes.

Discussion

In this article, we proposed a two-step estimator for
the GMMs with covariates, and we considered a com-
mon situation in GMMs where DEs are present
between the covariates and the growth factors within
each class. We further proposed applying the DE
modeling approach as presented by Vermunt and
Magidson (2021a) for the stepwise estimators.

We compare our proposed method with currently
available estimators in estimating GMMs, namely, the
one-step and the three-step estimators. The one-step
estimator is the FIML estimator, where all of the



covariates are incorporated into the GMMs at once.
For the three-step estimator, we also apply Vermunt
and Magidson (2021a) proposed modeling strategy for
estimating the DEs in latent class analysis (LCA) on
the framework of the GMMs. For the three-step esti-
mator, the step-one model is equivalent to the pro-
posed two-step estimator. Then, we compute the
conditional posterior probability of subjects given by
the covariates with DEs at step two. In the step-three
model, we estimate the class proportions conditional
on all covariates (including the covariates with DEs)
to address the overestimation of the covariate effect
on class membership. As there is rarely prior know-
ledge on how to specify DEs in real settings, we also
investigate how different specifications of DEs can
influence the performance of different estimators,
including ignoring, correctly specifying, and misspeci-
fying the DEs.

The results of our simulation studies show that all
three estimators work comparably well in the absence
of the DEs from covariates on the growth factors. In
the presence of DEs, ignoring the DEs leads to severe
bias in the estimated parameters of the three estima-
tors. The two-step and three-step estimators perform
comparably with biased parameter estimates and out-
perform the one-step estimator. The one-step estima-
tor is most to misspecification with
substantial bias and the lowest coverage rates, espe-
cially when the level of class separation is moderate.
When the DEs are specified, either correctly specified
or over-specified, all estimators perform better and
comparably well in terms of unbiased parameter esti-
mates and coverage rates close to the nominal level.
The results are in contrast to Diallo and Lu (2017),
whose results showed that the three-step estimator
with specified DEs performed worse than the one-step
estimator when estimating the covariate effects on the
LC variables. While Diallo and Lu (2017) used a naive
approach to modeling DEs, they ignored the indirect
effect through the LCs in the step one model. This
results in overestimation of DEs on the growth fac-
tors. By using the approach of Vermunt and
Magidson (2021a), unbiased estimates are obtained
using both stepwise estimators. Furthermore, when we
specify the plausible DEs path in Study 2, all three
estimators are robust to misspecification in terms of
acceptable type I error rates. However, in Study 3,
when we under-specify the DEs, all estimators tend to
overestimate the covariate effects on the LCs, leading
to biased parameter estimates. Similar results are
found by Di Mari and Bakk (2018), which investigates
the performance of estimators on the Latent Markov

sensitive
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models with varying specifications of DEs. They rec-
ommend that overspecifying the DEs is safer than
underspecifying them when there is poor knowledge
of which covariates could have DEs in the Latent
Markov modeling. A similar strategy can also be
applied in the GMMs. Moreover, the one-step estima-
tor has higher type I error rates than the two-step and
the three-step estimators when the DEs are
mispecified.*

In this article, we also investigated the efficiency of
different estimators by evaluating the SE/SD values. It
turns out that the two-step and the three-step estima-
tors are less efficient than the one-step estimator
when the DEs are specified (either correctly specified
or misspecified), tending to underestimate the SE val-
ues over all simulation conditions. Nevertheless, it is
typical for step-wise estimators to slightly underesti-
mate the SE values (Bakk & Kuha, 2018; Vermunt,
2010). The step-wise estimators, when obtaining the
Hessian matrix of the last step model, ignore the vari-
ability in the step one estimates, treating those values
as known, and thus ignoring the variance due to
uncertainty about the step one parameters. Currently,
approaches of correcting SEs in step-wise estimators
are available for simpler LC models (Bakk & Kuha,
2018), but their extension to multiple LVs in
GMM(e.g., latent intercept and slope) is not straight-
forward. Based on our simulation results, we do not
recommend relying on the SE estimates based on the
step-two Hessian matrix provided by the software,
especially under the low-entropy conditions, and
future research is needed to develop an accurate SE
estimator. Additionally, introducing Bayesian inferen-
tial methods in GMMs to better account for the
uncertainty is another possible solution, or alterna-
tively, investigating the use of bootstrap standard
errors.

In sum, when there are candidates of covariates
with DEs but the specific location of DEs is unknown,
we recommend using the one-step estimator with
overfitting DEs on both growth factors, in terms of its
better performance in efficiency and unbiased esti-
mates, and acceptable type I error rates. When there
are no clear candidates of covariates with DEs or for
exploratory purposes, we recommend applying the
two-step and the three-step estimators in terms of
their robustness against model misspecification.

This article considers the number of classes and the
DEs as known, and we chose a medium size of DEs on
the growth factors. However, this information is often

“See also the results of the Robustness Check 2 in the supplementary
material.
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not available and needs to be investigated in many
applied research contexts. In simple LC models, likeli-
hood ratio test and residual statistics (i.e., bivariate
residuals[BVR] and expected parameter change[EPC] sta-
tistics) are applied to identify the DEs from covariates to
indicators (Bakk, 2024; Di Mari et al, 2023; Oberski
et al., 2013). However, as the growth factors are latent
variables in GMMs, the BVR can not be implemented.
Moreover, penalization methods can also be a possible
way to select covariates and detect significant DEs. The
performance of other indices and methods in the GMM
framework with varying effect sizes of DEs has not been
studied yet. In this article, the method used to detect DEs
in the real data example is not ideally suited for GMM
and was employed solely for illustrative purposes. Our
main interests focused on parameter estimation accuracy
and efficiency over different estimators. Therefore, we do
not specifically recommend its use for applied research.
For the identification of DEs, the sensitivity of the one-
step estimator when both the covariates and location of
DEs are misspecified, can be beneficial to identify the
presence of DEs, though this needs further investigation
in the future.

In addition, this article focuses on a comprehensive
evaluation of parameter recovery for different estimators
when modeling DEs in GMM. To manage the scope of
the simulations, class enumeration is not addressed.
Nonetheless, class enumeration in GMM is a crucial and
complex issue. Prior research in factor mixture models
(FMM) has suggested that class enumeration should be
conducted in the presence of covariates (Wang et al,
2023). In contrast, a substantial body of work has recom-
mended excluding covariates during class enumeration,
due to the heightened risk of model misspecification
(Diallo et al, 2017; Lubke & Muthén, 2005 Nylund
et al, 2007; Vermunt, 2010). Moreover, Stegmann and
Grimm (2018) noted that while including covariates can
improve class enumeration, it may also impair the mod-
el’s ability to recover the true number of classes. Given
these conflicting findings, we believe that further detailed
investigation into the role of covariates in class enumer-
ation is warranted, especially in the presence of model
misspecification.

Our results also show that the performance of the
one-step estimator is substantially affected by the level of
class separation when the DEs are ignored, while it is
unaffected with specified DEs. The two-step and the
three-step estimators are quite sensitive to the level of
class separation across varying specifications of DEs.
Their performance systematically improved when the
classes became more separated, yielding lower bias and
higher coverage rates with smaller confidence intervals.

As previous research shows the step-wise estimator is not
recommended under low class separation conditions
(Vermunt, 2010), we only consider moderate and high
levels of class separation. However, in the applied setting,
weak class separation can occur. For this case, further
research can investigate whether using Bayesian methods
in step one could improve the performance of two-step
estimation in the context of GMMs.
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Appendix A. Evaluation criteria

The regression parameters and standard error estimates of
covariates were examined in terms of the absolute bias
(AB), mean square error (MSE), 95% confidence interval
(CI) of coverage rate (CR), and standard error ratio (SE/
SD). The formula of AB, MSE, and the SE/SD of the interest
parameter over 100 replications are as follows,

0\ — Z§:1|és - 9|
AB(0) = == —,
MSE() = w.
> 1 SE(0,)/S

WO

where 0, 0 and 0, are population value of the interested
parameter, the estimated 0 and its value from the s, repli-
cation, s is the number of the current replication
(s=1,2,..,5). We expect the AB and MSE values to be
close to 0, reflecting an accurate parameter estimator, and
the SE/SD value to be 1, reflecting a robust SE estimator.
We compute the 95% Wilson (1927) CI of CR, and we
expect the nominal level of CR, which is 95%, to fall into
its CL.

Appendix B. Manipulated factors

We present the population parameters chosen for manipu-
lating mixing ratios and class separation levels.

e Mixing ratio: For class 1 and class 2: (1) 50%, 50%, by
manipulating coefficient B, = 0.75 for Study 1 and B, =
—1.50 for studies 2 and 3; and (2) 30%, 70%, by setting
By = 1.61 for Study 1 and B, = —0.43 for studies 2 and
3, respectively.

e Class separation: In study 1, al) =15, O((()z) =-1.5 in
medium condition, oc(()1> =3, ot?2> = —3 in high condi-
tion. In studies 2 and 3, oy =0.5, 0((()2) =-0.5 in
medium condition, oc(<)1> = 1.5, OLO) =-1.5 in high

condition.
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