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A Two-Step Estimator for Growth Mixture Models with Covariates in the 
Presence of Direct Effects

Yuqi Liu , Zsuzsa Bakk , Ethan M. McCormick , and Mark de Rooij 

Methodology and Statistics Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands 

ABSTRACT 
Growth mixture models (GMMs) are popular approaches for modeling unobserved popula
tion heterogeneity over time. GMMs can be extended with covariates, predicting latent class 
(LC) membership, the within-class growth trajectories, or both. However, current estimators 
are sensitive to misspecifications in complex models. We propose extending the two-step 
estimator for LC models to GMMs, which provides robust estimation against model misspe
cifications (namely, ignored and overfitted the direct effects) for simpler LC models. We con
ducted several simulation studies, comparing the performance of the proposed two-step 
estimator to the commonly-used one- and three-step estimators. Three different population 
models were considered, including covariates that predicted only the LC membership (I), 
adding direct effects to the latent intercept (II), or to both growth factors (III). Results show 
that when predicting LC membership alone, all three estimators are unbiased when the 
measurement model is strong, with weak measurement model results being more nuanced. 
Alternatively, when including covariate effects on the growth factors, the two-step, and 
three-step estimators show consistent robustness against misspecifications with unbiased 
estimates across simulation conditions while tending to underestimate the standard error 
estimates while the one-step estimator is most sensitive to misspecifications.

KEYWORDS 
Growth mixture model; 
two-step; estimator; direct 
effects; covariates   

Introduction

Growth mixture models (GMMs; B. Muth�en & 
Shedden, 1999) are statistical models that can be used 
to identify distinctive growth trajectories within a het
erogeneous population, which have been widely used 
in applied research. For example, Bowers and Sprott 
(2012) performed GMMs to evaluate the change over 
time in school achievement profiles of students, and 
Chen et al. (2024) utilized GMMs to identify distinct
ive growth trajectories of cognitive function among 
aging citizens with diabetes in China.

In GMMs, a categorical latent class (LC) variable 
captures the growth trajectories of unobserved sub- 
populations, relaxing the single homogeneous popula
tion assumption of the simpler latent curve model 
(LCM; Meredith & Tisak, 1990). GMMs can be used 
to capture a variety of linear and nonlinear growth 
trajectories. In this paper, we will focus on the com
monly used linear growth pattern, in which the 

growth trajectory is captured by two continuous 
growth factors, namely the latent intercept and slope 
variables. After identifying the sub-populations and 
their growth trajectories (often called the measurement 
model), researchers are usually interested in under
standing the within- and between-person variability 
by incorporating external variables into GMMs, also 
known as covariates (known as the structural model).

Currently, two main estimators are available for 
estimating parameters of the GMMs with covariates, 
namely, the one-step and the bias-adjusted three-step 
estimators (Diallo & Lu, 2017). For the one-step esti
mator, also known as the full information maximum 
likelihood (FIML) estimator, the measurement model 
and structural model are estimated simultaneously by 
using all of the available information in the dataset, 
including the covariates (Huang et al., 2010; 
McCutcheon, 1987; Vermunt, 2010). This estimator 
yields efficient estimates when all the model assump
tions hold (Bakk et al., 2013). However, simultaneous 
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estimation may introduce interpretational confound
ing, where the latent construct that the applied 
researchers want to measure can change every time a 
new covariate is added to the model (Asparouhov & 
Muth�en, 2014; Bakk & Kuha, 2018; Di Mari et al., 
2023; Rosseel & Loh, 2024; Vermunt, 2010).

To prevent the interpretational confounding, as an 
alternative to the one-step estimator, the bias-adjusted 
three-step estimator has been developed for LC mod
els with external variables (Vermunt, 2010), which 
estimates the measurement model and structural 
model separately by breaking down the estimation 
process into three steps: (1) estimating the measure
ment model only using repeated measures in the data, 
(2) classifying individuals to the latent classes based 
on their estimated posterior class membership proba
bilities from step-one, and (3) estimating the struc
tural model by relating the class membership to 
external variables, while correcting the classification 
errors introduced in step-two. A series of approaches 
were developed for LC models to correct the classifi
cation errors (Bolck et al., 2004; Vermunt, 2010). The 
three-step maximum likelihood (ML) method pro
posed by Vermunt (2010) performs well in many LC 
models with external variables (e.g., latent class ana
lysis [LCA], latent Markov [LM] models), yielding 
unbiased and efficient parameter estimates (Bakk 
et al., 2014). In the remainder, we refer to the bias- 
adjusted three-step estimator as the three-step estima
tor for simplicity.

The GMMs with covariates

The GMMs have a more complex measurement model 
than the LCM, as shown in Figure 1. Specifically, it 
contains a set of repeated measures (i.e., y1, y2, :::, yT ;

where T is the number of time points.) that are 
regressed on the continuous latent intercept (g0) and 
slope (g1) variables. Furthermore, a categorical LC 
variable (c) is defined by the latent intercept and slope 
variables, allowing for population heterogeneity. 
Covariates can be included to predict the class mem
bership (reflected by the blue line, from covariates x1 

and x2 to c), but also to directly predict the class- 
specific growth factors (visualized as the two red lines, 
from covariate x2 to g0; from covariate x2 to g1), or 
both. For example, Chen et al. (2024) related cognitive 
function trajectories of Chinese respondents 45 years 
and older with diabetes to a set of baseline covariates 
(e.g., age, education level, gender, etc.) to discern pre
dictors of cognitive function scores among Chinese 
elderly.

If the covariates solely predict class membership, 
the existing estimators yield accurate parameter esti
mates when the measurement model is correctly 
specified and the classes are well separated (L. Li & 
Hser, 2011). However, when the covariates have direct 
effects (DEs) on the growth factors (the red lines in 
Figure 1), the situation becomes more complicated. In 
GMMs, the growth factors, serving as indicators of 
the latent class variable, constitute a portion of the 
measurement model. When the covariates have DEs 
on the growth factors, the association between growth 
factors is not fully explained by the latent class varia
bles. This situation violates the basic assumption of 
conditional independence between covariates and the 
indicators of the measurement model and shows 
measurement non-invariance or differential item func
tioning (Kankara�s et al., 2010; Vermunt, 2010). In 
simple LC models (we refer to the simplest type of a 
mixture model, e.g., LCA), we assume the indicators 
of latent classes (i.e., items) to be conditionally inde
pendent of the covariates given class membership. If 
we ignore these DEs, the un-modeled residual correla
tions between indicators and covariates will lead to 
bias in the parameter estimates (Masyn, 2017). 
Likewise, the parameter can be biased when the cova
riates have DEs on the growth factors that define the 
LCs in the GMMs.

The performance of existing estimators of GMMs 
in the presence of DEs on the latent factors

In the presence of DEs, the conditional independence 
assumption can be relaxed by modeling the DEs of 
the covariates on the concerned indicators. However, 
applied researchers may have limited prior evidence 
confirming which covariates actually exert DEs, and 
be uncertain in which specific indicators are affected 
by these DEs. In GMM, such ambiguity may result in 
model misspecification, either through omitting 

Figure 1. Growth mixture model with covariates x1 and x2, 
where ytðt ¼ 1, :::, TÞ is a vector of indicators that are directly 
regressed on the latent intercept and slope variables measured 
at t time points (e.g., yt1, yt2, :::, ytH; where H is the number of 
indicators), c is the LC variable, g0 is the latent intercept vari
able, and g1 is the latent slope variable.
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significant DEs or by erroneously modeling nonexis
tent effects.

For the three-step estimator, ignoring the DEs of 
covariates at step one can severely distort the measure
ment model and lead to substantial parameter bias in 
LCA and GMM (Asparouhov & Muth�en, 2014). To 
account for this drawback, Asparouhov and Muth�en 
(2014) proposed a possible modification by including 
the DEs in the measurement model of GMMs, and the 
modified three-step estimator performs comparably to 
the one-step when the classes are well separated. 
However, the number of manipulated factors in this 
study was limited, and the sample size of 10,000 used 
in the simulation study is not representative of many 
applied research settings. Moreover, another more 
extended simulation study (Diallo & Lu, 2017) showed 
conflicting results with those of Asparouhov and 
Muth�en (2014). Namely, the modified three-step esti
mator performs worse than the one-step estimator 
across all conditions. Furthermore, the modified three- 
step estimator as proposed by Asparouhov and Muth�en 
performs even worse than the conventional three-step 
estimator when the sample size is less than 2000, sug
gesting that the modifications of the three-step estima
tor should be carefully considered. While this estimator 
has also been developed in the context of GMMs 
(Asparouhov & Muth�en, 2014; Diallo & Lu, 2017), so 
far the amount of evidence about its performance is 
insufficient in more complex setups of GMMs with 
covariates, particularly when DEs are specified on 
latent intercept and slope, and in different DE specifi
cations that may occur in applied research contexts.

Recently, Vermunt and Magidson (2021a) proposed a 
modified version of the three-step estimator for LC 
models in the presence of DEs, modeling the covariates 
of interest on indicators and class membership at step 
one, and re-estimating the effects of concerned covari
ates on class membership at step three to prevent the 
overestimation of the DEs due to the unmodeled indir
ect effects via LC variables, and also correcting the clas
sification error that differs across categories of covariates 
with DEs. This modified method works well, leading to 
unbiased parameter estimates in LC models. However, 
their modeling strategy was originally developed for the 
DEs on the observed indicator in LCA, and its general
ization to handle DEs on latent variables—specifically 
the latent intercept and slope in GMM—has not yet 
been formally articulated or examined.

For the one-step estimator, the known DEs can be 
easily specified in the full model. However, despite the 
interpretational confounding problem, misspecifica
tion of DEs can distort the measurement model and 

thus change the latent class solutions, leading to 
improper interpretation of results (Vermunt, 2010). 
Furthermore, the one-step estimator exhibits substan
tial bias when direct effects (DEs) are ignored within 
the regression mixture model (RMM) framework 
(Kim et al., 2016). In contrast, when covariates that 
contribute to class separation are appropriately 
included, the one-step estimator performs well under 
the factor mixture model (FMM) framework. Notably, 
under conditions of low class separation, the one-step 
estimator outperforms the three-step estimator during 
the class enumeration process when relevant covari
ates are included, and demonstrates greater robustness 
to misspecification of DEs (i.e., ignoring and overfit
ting the DEs; Wang et al., 2023).

Regarding the accuracy of parameter estimates, the 
one-step estimator yields substantial bias in estimated 
covariate effects when the DEs are ignored in the 
LCA and the RMM (Janssen et al., 2019; Kim et al., 
2016). In addition, when GMMs include numerous 
covariates for exploratory purposes, the one-step esti
mator can have convergence issues and local maxima 
due to the complexity of the likelihood function 
(Hipp & Bauer, 2006; Vermunt, 2010).

The proposed two-step estimator

A recently developed two-step estimator proposed for 
LC models (Bakk & Kuha, 2018) can be an alternative 
to the one-step and three-step estimators. In the two- 
step estimator, the measurement and structural mod
els are estimated separately, which is similar to the 
three-step estimator. In step one, the covariates are 
excluded and only the measurement model is esti
mated. In step two, all the parameters of the measure
ment model are fixed at their estimated values from 
step one, and only the parameters of the remaining 
structural model are estimated conditioning on the 
step-one measurement model. Compared to the three- 
step estimator, the two-step estimator avoids introduc
ing classification errors as in the classification step of 
the three-step estimator while showing comparable 
computational efficiency and conceptual advantage. 
Moreover, the two-step estimator can flexibly model 
the DEs from covariates to concerned indicators, 
which is recommended for estimating the single-level 
and multilevel LCA with external variables 
(Asparouhov & Muth�en, 2014; Bakk et al., 2022; Bakk 
& Kuha, 2018). Since the measurement model is fixed 
when estimating the structural model, the two parts of 
the model do not directly affect each other, which 
allows the two-step estimator to be more robust than 
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the one-step estimator when the DEs are ignored, 
which have been implemented in many mixture mod
els, such as in the latent markov model and the multi
level LCA (Di Mari et al., 2023; Di Mari & Bakk, 
2018). However, this approach has not yet been 
extended to GMMs with more complex measurement 
models that involve both continuous and categorical 
latent variables. When covariates with DEs are 
included in GMM, its robustness to misspecification— 
defined here as either omitting or overfitting the 
DEs—has not been comprehensively evaluated with 
regard to bias and efficiency of parameter recovery.

Given the aforementioned problems on the one- 
and three-step estimators for GMMs as well as the 
flexibility of the two-step method for modeling covari
ates and its robustness to misspecification, we propose 
to extend the two-step estimator for the LCA to the 
context of GMMs with covariates. Our method is 
motivated by Asparouhov and Muth�en (2014), who 
proposed the three-step estimator in GMMs and 
Vermunt and Magidson (2021a) proposed a modeling 
strategy for the three-step estimator to account for 
DEs in LC models. Assume we know the possible 
covariates with DEs. The proposed two-step estimator 
here separately estimates the measurement and struc
tural models. In step one, we include the DEs of cova
riates in the measurement model. Note that, to 
account for the overestimation of the DEs caused by 
ignoring the association between the latent class vari
able and covariates (Vermunt & Magidson, 2021a), we 
model not only the covariate effects on growth factors 
but also their effects on class membership in the step- 
one model. In step two, we estimate the structural 
model with all the interested covariates affecting class 
membership, conditioning on the step-one model that 
also includes the covariates with DEs on the latent 
intercept and slope. Specifically, the regression param
eters of the concerned covariate effects on growth fac
tors (i.e., the DEs) are fixed, while its effects on class 
membership are re-estimated at step two, to ensure 
obtaining the correct partial regression coefficients 
when incorporating covariates that solely predict class 
membership, in line with the recommendations of 
Vermunt and Magidson (2021a). In addition, we also 
propose to extend the approach (Vermunt & 
Magidson, 2021a) of three-step estimator for modeling 
DEs on the observed indicators in LCA to latent vari
ables in the context of GMM.

In this paper, we introduce the two-step estimator 
to the context of GMMs and compare the efficiency 
and reliability of the proposed two-step estimator to 
the one-step estimator and three-step estimator, in 

terms of the accuracy of regression parameter esti
mates and coverage rates. We also examine the 
robustness of these estimators against misspecification 
of the covariate effects. Two different ways of misspe
cification are used, namely (1) we ignore the DEs 
from covariates to growth factors, and (2) we incor
rectly include the DEs on growth factors. 
Additionally, we also inspect the Type I error rate for 
models that misspecify the effects between covariates 
and growth factors.

The remainder of this paper is structured as fol
lows. First, we present the unconditional GMMs and 
GMMs incorporating covariates, and various estima
tors in estimating GMMs are given, including the 
one-step, the proposed two-step, and the three-step 
estimators. Then, we evaluate the performance of the 
proposed two-step and the competing one- and three- 
step estimators via extensive simulation studies. We 
apply the proposed two-step estimator to a real data
set from The China Health and Retirement 
Longitudinal Study (CHARLS; Zhao et al., 2013). The 
final section is a discussion of the presented results.

Model specification

The specification of GMMs

GMMs extend the LCM by relaxing the assumption of 
a single population. Assuming we only have one item 
at each time point, we first describe the unconditional 
LCM, which can be defined as

yi ¼ Kgi þ �i, (1) 

where yi is a T � 1 vector of repeated measures 
observed for individual i (i ¼ 1, 2, :::, N), T is the 
number of time points, where gi is a M � 1 vector of 
latent growth factors, M is the number of growth fac
tors (e.g., for specifying a linear trajectory, M equals 2 
and indicates the latent intercept g0i and latent slope 
g1i:), for capturing individual variation from the aver
age growth trajectory. Finally, �i is a T � 1 vector of 
time-specific residuals. K is the T�M factor loading 
matrix with fixed coefficients to predetermine the 
functional form of the growth trajectory. For a linear 
trajectory with equally spaced time intervals, K can be 
set to

K ¼

1 0
1 1
1 :::

1 T − 1

0

B
B
@

1

C
C
A: (2) 

In the unconditional LCM, gi can be written as:

gi ¼ aþ fi, (3) 
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where a is an M � 1 vector of growth factor means 
and fi is an M � 1 vector of growth factor residuals. 
Under assumptions of independence and multivariate 
normality, �i � Nð0, HÞ; and fi � Nð0, WÞ; where H 

is a T�T variance-covariance matrix of time-specific 
residuals and W is an M�M variance-covariance 
matrix of growth factors. The probability density 
function f of yi is:

f ðyiÞ � MVN lðhÞ, RðhÞð Þ, (4) 

where lðhÞ is the T � 1 model-implied mean vector 
and RðhÞ is the T�T model-implied variance-covair
ance matrix with vector h ¼ ða, W, HÞ of estimated 
parameters, given by

lðhÞ ¼ Ka

RðhÞ ¼ KWK0 þH:
(5) 

In GMMs, the single population assumption is 
relaxed by introducing a categorical latent variable (c) 
to capture heterogeneity in growth trajectories. 
Therefore, when there are K distinctive latent classes 
within the population, assume a vector of repeated 
measures yðkÞi is sampled from a multivariate normal 
distribution for the kth latent class (k ¼ 1, 2, :::, K). 
The marginal distribution of repeated measures for all 
classes, yi is allowed to be non-normally distributed, 
which can be represented by a finite mixture of K 
normal distributions, with the probability density 
function expressed as:

f ðyiÞ ¼
XK

k¼1
pðci ¼ kÞf ðyðkÞi Þ, (6) 

with class-specific model-implied mean vector 
lðhðkÞÞ ¼ KaðkÞ; and variance-covariance matrix 
RðhðkÞÞ ¼ KWðkÞK0 þHðkÞ: The pðci ¼ kÞ is the class 
proportion defining the unconditional probability of 
individual i belonging to class k, where ci is the class 
membership for individual i, and f ðyðkÞi Þ presents the 
class-specific probability density function. The super
script k indicates the parameters are allowed to be 
class-specific.

The class sizes pðci ¼ kÞ are parameterized using a 
multinomial logistic regression model, given by:

pðci ¼ kÞ ¼
exp ðbðkÞ0 Þ

PK
k¼1 exp ðbðkÞ0 Þ

(7) 

with pðci ¼ kÞ > 0 and 
PK

k¼1 pðci ¼ kÞ ¼ 1; where 
b
ðkÞ
0 is the logit intercept for class k, and this param

eter for the reference class (k¼ 1) is standardized to 
zero for identification (bð1Þ0 ¼ 0).

Covariates can be incorporated into the GMMs to 
predict either the class membership, or the growth 

factors, or both. To do so, we can extend Equation (6)
to be a conditional GMM of the form

f ðyijxiÞ ¼
XK

k¼1
pðci ¼ kjxiÞf ðy

ðkÞ
i jxiÞ, (8) 

where xi denotes a Q� 1 vector of covariates for indi
vidual i, and Q is the number of covariates. Therefore, 
the class proportion pðci ¼ kjxiÞ become a multinomi
nal logistic function of covariates xi; which is given by

pðci ¼ kjxiÞ ¼
exp ðbðkÞ0 þ xib

ðkÞ
x Þ

PK
k¼1 exp ðbðkÞ0 þ xib

ðkÞ
x Þ

, (9) 

with pðci ¼ kjxiÞ > 0 and 
PK

k¼1 pðci ¼ kjxiÞ ¼ 1: And 
where bðkÞx is a Q� 1 vector of regression slopes for 
class K.

The f ðyðkÞi jxiÞ is the class-specific probability dens
ity function conditioning on xi: The model-implied 
class-specific mean vector lðhðkÞÞ and variance- 
covariance matrix RðhðkÞÞ can be expressed by

lðhðkÞÞ ¼ KaðkÞ þ KCðkÞx
RðhðkÞÞ ¼ KðWðkÞ þ CðkÞUCðkÞ

0

ÞK0 þHðkÞ:
(10) 

When there are Q covariates predicting the growth 
factors, U is a Q�Q variance-covariance matrix of xi;

and where CðkÞ is the M�Q matrix of coefficients 
between the growth factors and covariates in class k.

The estimation of GMMs by maximizing the log- 
likelihood function typically employs the expectation- 
maximization (EM) algorithm (Dempster et al., 1977).

For illustration, along with the example in 
Figure 1, assume we have two covariates, x1 and x2, 
where x1 only predicts the class membership and x2 
predicts both class membership and the growth fac
tors (i.e., the latent intercept and slope for linear tra
jectory). Thus the bðkÞx can be expressed as bðkÞx1 

and 
bðkÞx2

; representing the logistic regression coefficients 
for x1 and x2 on the latent class variable respectively. 
And the CðkÞ can be extended to cðkÞI and cðkÞS ; repre
senting the coefficients of x2 on the latent intercept 
and slope in Class k respectively. As we consider a 
linear growth trajectory, the aðkÞ can be extended as 
the mean of latent intercept a

ðkÞ
0 and slope a

ðkÞ
1 for 

class k. The WðkÞ can be expressed as

WðkÞ ¼
w
ðkÞ
00

w
ðkÞ
10 w

ðkÞ
11

 !

, 

where w
ðkÞ
00 , w

ðkÞ
10 ; and w

ðkÞ
11 are the residual variances 

of the latent intercept and slope and the residual 
covariance of both growth factors for class k, respect
ively. All parameters in hfull that need to be estimated 
are:
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hfull ¼ fa
ðkÞ
0 , aðkÞ1 , cðkÞI , cðkÞS , wðkÞ00 , wðkÞ10 , wðkÞ11 , bðkÞ0 , bðkÞx1

, bðkÞx2
, pð2Þ, :::, pðKÞg:

(11) 

In what follows, for all proposed estimators, we use 
the standard Hessian-based standard error estimates 
as provided by standard software (Vermunt & 
Magidson, 2021b).

Estimation methods

This section presents the one-step, the proposed two- 
step, and the three-step estimators for estimating the 
growth mixture models (GMMs) with covariates 
defined in the previous section. For simplicity, we use 
the GMM with covariates presented in Figure 1 as an 
example. Note that both covariates x1 without DEs 
and x2 with DEs can be extended to a vector of cova
riates in more complex settings.

The one-step estimator
The one-step FIML estimator estimates all parameters 
(defined in Equation (11)) of the measurement and 
the structural models at once (B. Muth�en, 2004). 
When estimating GMM with covariates x1 and x2, the 
EM algorithm is used to maximize the log-likelihood 
function LogLFIMLðhfullÞ for f ðyijx1i, x2iÞ:

LogLFIMLðhfullÞ

¼
XN

i¼1
log

XK

k¼1
pðci ¼ kjx1i, x2iÞf yðkÞi jx2i, lðhfullÞ, RðhfullÞ

� �
 !

(12) 

The proposed two-step estimator
Here, we apply the two-step estimator (Bakk & Kuha, 
2018) on the GMMs with covariates, and model the 
DEs of covariates on the growth factors following the 
recommendation of Vermunt and Magidson (2021a) 
on the DEs modeling strategy for LCA.

Step-one. In step one of the proposed two-step esti
mator, we first estimate the class-specific parameters 
and class proportions for the GMM with covariates 
specified before. Note that we include covariate with 
DEs (i.e., x2) at step one, containing both the con
cerned DEs on growth factors and the effect on class 
membership, in line with the recommendations of 
Vermunt and Magidson (2021a). The estimated 
parameters in step one are as follows:

hs1 ¼ fa
ðkÞ
0 , aðkÞ1 , cðkÞI , cðkÞS , wðkÞ00 , wðkÞ10 , wðkÞ11 , bðkÞ0 , bðkÞx2

, pð2Þ, :::, pðKÞg

(13) 

The log-likelihood function of the step-one model 
can be specified as follows:

LogLðhs1Þ

¼
XN

i¼1
log

XK

k¼2
pðci ¼ kjx2iÞf yðkÞi jx2i, lðhs1Þ, Rðhs1Þ

� �
 !

(14) 

Step-two. In step two of the proposed two-step esti
mator, we examine the association between covariates 
and class membership by estimating the regression 
coefficients in Equation (9), and re-estimate the class 
proportions conditioning on x1 and x2. Meanwhile, 
the remaining parameters of the step-one model are 
fixed at their estimated value, which is ĥs1 ¼

fa
ðkÞ
0 , aðkÞ1 , cðkÞI , cðkÞS , wðkÞ00 , wðkÞ10 , wðkÞ11 g: Note that the DEs 

of x2 on growth factors were fixed at step-one esti
mates (i.e, c

ðkÞ
I , cðkÞS ), while the effect of x2 on class 

membership is re-estimated at step two which follows 
the recommendations of Vermunt and Magidson 
(2021a). Hence, the parameters that need to be esti
mated in step two are as follows:

hs2 ¼ fðb
ðkÞ
0 , bðkÞx1

, bðkÞx2
, pð2Þ, :::, pðKÞÞjĥs1g: (15) 

The log-likelihood function of the step-two model 
can be specified as follows:

LogLðhs2jhs1 ¼ ĥs1Þ ¼

XN

i¼1
log

XK

k¼1
pðci ¼ kjx1i, x2iÞf yðkÞi jx2i, lðĥs1Þ, Rðĥs1Þ

� �
 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Freeðconditional on ĥs1ÞFixed ðĥs1Þ

:

(16) 

Using this approach makes it possible to separate 
the measurement and structural model, by replacing 
the FIML approach with a model where a conditional 
likelihood function is used at step two, allowing for 
computational efficiency (Bakk & Kuha, 2018).

The three-step estimator
In this paper, we generalize the Vermunt and 
Magidson (2021a) modeling strategy for the three-step 
estimator in the presence of known DEs on the 
observed indicators to the context of GMMs, in which 
the DEs is on latent variables.

Step-one. The step-one model is equivalent to the step- 
one model of the proposed two-step estimator, thus, the 
estimated parameters hs1 are obtained by maximizing 
the log-likelihood function of Equation (14).

6 Y. LIU ET AL.



Step-two. In step-two, individuals are assigned to 
latent classes based on their posterior probability of 
class membership given covariate x2i; which is 
expressed as follows:

Pðci ¼ kjyi, x2iÞ ¼
pðci ¼ kjx2iÞf ðy

ðkÞ
i jx2iÞ

f ðyijx2iÞ
(17) 

Here, we applied modal assignments, in which the 
individuals are assigned to the class with the highest 
posterior class probability. The posterior class assign
ments are denoted by introducing a new categorical 
variable W, which can take on the values w ¼
1, 2, :::, K: In this step, classification errors are intro
duced and can be quantified as the posterior class 
membership conditional on the true class membership 
and x2 Vermunt (2010), that is:
PðW ¼ wjc ¼ k, x2Þ

¼
1
N

XN

i¼1

XK

k¼1
f ðyðkÞi jg

ðkÞ
i Þf ðg

ðkÞ
i jx2iÞ � Pðc ¼ kjyðkÞi , gðkÞi , x2iÞ

 

PðW ¼ wjyi, gi, x2iÞ
�
=Pðc ¼ kjx2

�

:

(18) 

Here, in contrast to the proposal from Bolck et al. 
(2004), which disregarded x2 in the classification error 
matrix, Vermunt and Magidson (2021a) proposed to 
allow the classification error matrix with elements 
PðW ¼ wjc ¼ k, x2Þ to vary across the level of x2.

Step-three. The step-three model is an LC model con
ditional on the x1 and x2, with a single indicator W of 
response probabilities PðW ¼ wjc ¼ k, x2Þ; that is,

PðW ¼ wjx1, x2Þ ¼
XK

k¼1
Pðc ¼ kjx1, x2Þ

X

w6¼k
PðW ¼ wjc

¼ k, x2Þ:

(19) 

In step three, we only estimate the regression coef
ficients of the multinominal logistic function relating 
W and x1 and x2, that is, hs3 ¼ fb

ðkÞ
0 , bðkÞx1

, bðkÞx2
gðk ¼

1, 2, :::, KÞ: The hs3 is obtained by maximizing the fol
lowing log-likelihood function,

LogLðhs3Þ ¼
XN

i¼1
log

XK

w¼1
PðW ¼ wjx1, x2Þ

 !

(20) 

For parameter estimation, we use the ML estimator 
proposed by Vermunt (2010). For an extended 
description of the three-step estimator, we refer to 
Asparouhov and Muth�en (2014), Vermunt and 
Magidson (2021a), and Diallo and Lu (2017).

Simulation settings

Three simulation studies were conducted to assess the 
performance of the different estimators for the GMMs 
with covariates. Specifically, we compare the com
monly used one-step and the three-step estimators 
with the proposed two-step estimator among ignored, 
correctly specified, or overfitted DEs of covariates. 
The efficiency and accuracy of each estimator are 
examined, specifically evaluating the parameters of the 
estimated covariate effects (on the LC variable and 
DEs on the growth factors) and its corresponding 
standard errors (SEs), in terms of the absolute bias 
(AB), the mean square error (MSE), the relative effi
ciency (SE/SD ratio), and the coverage rates (CRs) of 
95% confidence interval (CI). The formulas for these 
criteria can be found in Appendix A. We expect that 
the estimators that specify DEs (either correctly speci
fied or overfitted) perform better than the estimators 
that ignore the DEs, and that the proposed two-step 
estimator performs comparably to the one-step and 
the three-step estimators with correctly specified DEs 
and is more robust than the one-step estimator with 
misspecified DEs.

Population models

For all three simulation studies, we sampled the data 
from two-class linear GMMs with 3 observed continu
ous indicators that directly regress on the latent inter
cept and slope variables at each time point 
(yt � Nð0, 1Þ; t ¼ 1, 2, 3, :::, T) and with:

� Population model I: only with covariate x1 predict
ing class membership (Study 1).

� Population model II: with covariates x1 predicting 
class membership and x2 predicting the latent 
intercept (i.e., g0) only (Study 2).

� Population model III: with covariates x1 predicting 
class membership and x2 predicting both growth 
factors (i.e., g0, g1) (Study 3)

The x1 and x2 are sampled from Uð1, 5Þ: The popu
lation models are visualized in Figure 2, in which we 
only presented the model part of interest (i.e., the 
association among growth factors, LC variables, and 
covariates).

The population parameters were chosen based on 
both previous simulation studies and substantive 
research on mixture models (e.g., Diallo et al., 2017; 
M. Li & Harring, 2017; Tofighi & Enders, 2008; 
Vermunt & Magidson, 2021a). Specifically, within the 
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class k, we assumed the repeated measures 

 yðkÞ1
:::

yðkÞT

!

�

MVNðlðkÞ, RðkÞÞ; with

lðkÞ ¼ KðaðkÞ þ cðkÞx2Þ

RðkÞ ¼ KðWþ cðkÞ/cðkÞ
0

ÞK0 þH:

The mean vector lðkÞ of repeated measures is 
defined by aðkÞ; cðkÞ, K (as defined in Equation (2)), 
and the mean of x2. The aðkÞ includes the mean of 
latent intercept (aðkÞ0 ) and slope (aðkÞ1 ), notice that we 
varied the aðkÞ0 across two classes and population mod
els to manipulate the level of class separation, the 
details are presented in the manipulated factor section. 
For population models I, II, and III, the a

ðkÞ
1 was 

defined for class 1 and class 2, as að1Þ1 ¼ −0:20, að2Þ1 ¼

0:20: As only covariate (x2) predict g0 in population 
model II, the cðkÞ was defined as c

ð1Þ
I ¼ 0:5; c

ð2Þ
I ¼

−0:5: In population model III, x2 predicts both g0 and 
g1, which was defined as cð1Þ ¼ ðc

ð1Þ
I , cð1ÞS Þ ¼

ð0:5, 0:25Þ; cð2Þ ¼ ðc
ð2Þ
I , cð2ÞS Þ ¼ ð−0:5, − 0:25Þ: To 

focus on investigating the proper strategy for model
ing the DEs in GMMs, we chose a medium size of the 
DEs from x2 for growth factors across simulation 
studies.

The variance-covariance matrix (RðkÞ) of repeated 
measures is defined by the W, / (the variance of x2) 
and H: For simplicity, the W and H were set to be 
invariant across all classes and population models. 
Specifically, the W was set to

W ¼
w00
w10 w11

� �

¼
1:00

−0:15 1:00

� �

:

And the H was fixed as a diagonal matrix with all 
the elements fixed to 1.

We set the logistic regression parameters of x1 and 
x2 on c to determine the class membership (as speci
fied in Equation (9)). Specifically, bx1

¼ −0:50 for 
population models I, II, and III, and bx2

¼ 0:75 for 
population models II and III. The regression intercept 
(b0) of c was varied across three population models to 
manipulate the mixing ratio of classes and to obtain 
two class size settings, namely equal and unequal 
classes (see below).

Manipulated factors

According to previous simulation and applied studies 
on mixture models, we manipulated the following 
four factors given their important influence on the 
performance of GMM, including the sample size, 
the mixing ratios, the degree of class separation, and 
the number of time points. Previous research showed 
that the sample size, mixing ratios, and class separ
ation are important factors of model performance in 
mixture modeling in terms of the class enumeration 
and parameter recovery (Asparouhov & Muth�en, 
2014; Diallo & Lu, 2017; L. Li & Hser, 2011; Tofighi 
& Enders, 2008; Vermunt, 2010; Wang et al., 2023). 
In addition, the performance of the three-step and 
two-step estimators highly depends on the class separ
ation and sample size (Bakk & Kuha, 2018; Di Mari 
et al., 2023; Vermunt, 2010). Moreover, the number of 
time points also plays a vital role in ensuring the stat
istical power in GMM (B. O. Muth�en & Curran, 
1997).

For the manipulated factors in the three simulation 
studies, (1) two different sample sizes are chosen: 
N¼ 500 and 1000. (2) Two levels of mixing ratios 
were applied. (3) Two levels (medium and high) of 
class separation conditions were applied by tuning the 
a
ðkÞ
0 (For details, as shown in Appendix B). The low 

level is not considered, as this condition is not recom
mended for step-wise estimators (Vermunt, 2010). 
The entropy value was used to assess the accuracy of 
the generated class separation. The entropy value 
ranged from 0.52 to 0.90 for the medium separation 
condition and from 0.93 to 0.99 for the high separ
ation condition, averaged from all simulated data sets. 
(4) We manipulated the number of time points (T) to 
3 and 6 across simulation studies. The chosen param
eters of manipulated factors are typically used in sub
stantial research and simulation studies in the 
framework of GMMs.

Figure 2. Population models for the three simulation studies, 
where ytðt ¼ 1, :::, TÞ are the indicators measured at t time 
point, c is the LC variable, g0 is the latent intercept, and g1 is 
the latent slope. The x1 and x2 are the covariates.
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Data generation and analytical procedure

The three simulation studies consisted of 16 designed 
conditions (2 levels of sample sizes � 2 levels of mix
ing ratios � 2 levels of class separation � 2 levels of 
time points) for each population model, 48 conditions 
in total. We generated 100 replications for each condi
tion, resulting in 4800 datasets for 3 simulation 
studies.

In Study 1, the population model I only included 
covariate x1 without DEs, we thereby compared the 
one-step estimator with x1 to the two-step and the 
three-step estimator without x1 in the step-one model, 
while incorporating x1 in step-two model of the two- 
step estimator and step-three model of the three-step 
estimator. Hence, we employed 3 models to analyze 
the simulated datasets at each condition.

In Studies 2 and 3, we included covariates x1, also 
x2, that have DEs on the latent intercept for popula
tion model II and on both growth factors for popula
tion model III. We compared the performance of 
three alternative estimators in the presence of DEs. 
For each estimator, we evaluated the impact of three 
different specifications for the DEs of x2: ignoring the 
DEs (Specification A), specifying the DEs on the 
latent intercept only (Specification B), and specifying 
the DEs on the latent intercept and slope 
(Specification C). Note that the correct specification 
and misspecification of DEs vary depending on the 
population model of different studies. For study 2, 
specification B correctly specified DEs, in contrast to 
study 3, where specification C is correct. In total, each 
simulated dataset at each condition was analyzed 
using 9 models (3 estimators � 3 specifications).

Specifically, 3 one-step estimators with varying speci
fications of DEs were built, which were identical to the 
three population models, 3 two-step, and 3 three-step 
estimators, with varying specifications of the DEs at their 
equivalent step-one models, the corresponding step-wise 
models are presented in Figure 3a and Figure 3b. All 
simulated data sets were generated and estimated using 
LatentGOLD version 6.0 Vermunt and Magidson 
(2021b), and results were analyzed in R. The 
LatentGOLD syntax and R code can be found in the 
author’s GitHub repository 1.

To prevent the label-switching problem (Tueller 
et al., 2011), we provided starting values2 for all mod
els across three simulation studies in LatentGOLD.

Results

Study 1: Population model I with covariate effect 
only on class membership

In Study 1, we compared the performance of the dif
ferent estimators on estimating the GMMs with cova
riate x1 predicting the class membership only. Table 1
presents the absolute bias (AB) and 95% CI of CRs of 
parameter bx1 

for the three estimators under the 6 
time points conditions with varying sample sizes, lev
els of class separation (measured by the average of 
entropy), and mixing ratios. The results indicate that 
all three estimators performed comparably well in the 
6 time points conditions, resulting in negligible par
ameter AB and acceptable CRs over the 8 simulation 
conditions (2 sample size � 2 class separation � 2 
mixing ratio). A similar pattern of results was 
obtained in the 3 time points conditions as well (see 
Appendix C).

Figure 4 displays the boxplots for relative efficiency 
(SE/SD ratios) with different time points, averaged 
over the other 3 design factor conditions (i.e., mixing 
ratio, class separation, and sample size). In the 3 time 
point conditions, the SE/SD values are close to 1 over 
all three estimators, indicating that the standard error 
(SE) estimators are similar to the sampling variance 
regardless of the sample sizes, levels of class separ
ation, and mixing ratios. In the 6 time point condi
tions, all three estimators overestimate the SEs. 
Specifically, the proposed two-step estimator per
formed comparably to the one-step estimator, and 
better than the three-step estimator, the latter yields a 
larger magnitude of SEs overestimation than the other 
two estimators. The SE/SD values at each simulated 
condition are in Appendix E. We also inspected the 
mean square value of the bx1

; and the results are simi
lar to the AB (see Appendix D).

Study 2: Population model II with covariate effects 
on the class membership and on the latent 
intercept

In study 2, data were generated from the population 
model II with a DE from covariate x2 to the latent 
intercept, and effects of covariates x1 and x2 on the 
LCs. We inspected the estimated parameter bias (AB), 
coverage rates (CRs), relative efficiency (SE/SD ratios), 
and the type I error rates (i.e., the probability of 
incorrectly accepting a significant effect of x2 on the 
latent slope), to evaluate the performance of the one- 
step, the two-step, and the three-step estimators in the 
presence of DE.

1See https://github.com/Yuqi-psy/Two-step-GMM.git.
2The starting values are the parameters of population models. A 
robustness check without specifying the starting values was run, and the 
results are consistent with our simulation results. The details can be 
found in the supplementary materials.
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Table 2 presents the AB and 95% CI of CRs for 
covariate effects on LCs (i.e., parameters bx1 

and bx2
) 

in the 6 time points conditions with varying sample 
sizes, levels of class separation, and mixing ratios. For 
the bx2

; when we ignored the DEs (specification A), 
all three estimators show bias, especially when the 
classes are poorly separated. Specifically, the two-step 
and the three-step estimators performed comparably, 
with the AB range from 0.03 to 0.26 and CRs not 
reaching the nominal level. Not surprisingly, the one- 
step estimator was the most sensitive estimator to 
misspecification, with the largest AB range from 0.05 
to 1.43 and the lowest CRs. Furthermore, the 

performance of all three estimators systematically 
improved when the DEs were specified (either specifi
cation B or C), yielding negligible AB (range from 
0.00 to 0.01) and acceptable CRs across simulation 
conditions.

Next, zooming into the different simulation condi
tions, we see that all three estimators performed better 
as the classes become more separate, while they are 
less affected by the sample size and the mixing ratio. 
When the DEs were specified (specification B or C), 
the three-step and the two-step estimators were more 
sensitive to the level of class separation than the one- 
step estimator. As shown in Table 2, the CRs of these 

Figure 3. The step-wise models for the two-step and the three-step estimators in simulation studies 2 and 3, with three different 
specifications of the direct effects from x2 on c. The dashed lines for the two-step approach represent the parameters on this path 
that were fixed at the step one estimates. The w is the classification LC variable in the three-step estimator.
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two estimators are substantially reduced but still pro
vide unbiased estimates. For the bx1 

which has no DE, 
all three estimators performed systematically well with 
AB smaller than 0.03 and CRs close to the nominal 
level within the CI, across 8 conditions and 3 specifi
cations, except for the one-step estimator with ignored 
DEs (specification A) under a moderate entropy and 
equal class size conditions.

Figure 5 depicts the boxplots for SE/SD ratio values 
reported at each replication for the bx1 

and bx2 
aver

aged over 8 simulation conditions. For the bx2
; all 

estimators tend to underestimate the SEs over differ
ent time points conditions. All three estimators with 
specified DEs (specifications B or C) performed better 
than estimators with ignored DEs (specification A), 
with less underestimation of SE values. Specifically, 
the two-step estimator provides slightly more underes
timated SEs than the one-step and the three-step esti
mators. Not surprisingly, the one-step estimator with 
ignored DEs (One-step A) substantially underesti
mates the SEs. When we specified the DEs (specifica
tions B or C), the most efficient estimator was the 
one-step, followed closely by the three-step and the 
two-step estimators, the stepwise estimators were less 
efficient with underestimating the SE values, especially 
in the moderate class separation conditions (for the 
detailed SE/SD in each simulated condition, we pre
sented in Appendix E). For the bx1

; the one-step and Ta
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Figure 4. Boxplots of relative efficiency for the regression 
coefficient of the latent class variable (bx1

) averaged over 8 
simulation conditions for study 1. SE/SD is the ratio of standard 
error versus standard deviation. One-step is the one-step esti
mator. Two-step is the proposed two-step estimator. Three- 
step is the three-step estimator.
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two-step estimator performed comparably well pro
ducing efficient SE estimates except for the one-step 
with ignored DEs (specification A) over different time 
points conditions. The three-step estimator tends to 
slightly overestimate the SE over three specifications 
still having the means of SE/SD less than 1.15.

For the latent intercept coefficients cI in 6 time 
points condition, as we can see, all estimators with 
modeled DEs (specification B or C) performed system
atically well with approximately unbiased parameter 
estimates across all 8 conditions in Table 2, in terms of 
the CRs of all three estimators are close to 95% across 
simulation conditions, except for having a slight under
coverage in the moderate entropy or smaller class size 
conditions. In Figure 6, we display the boxplots for SE/ 
SD reported at each simulation condition for cI aver
aged over the two classes. All estimators with specified 
DEs (specifications B or C) were approximately 
unbiased under all time point conditions. The results 
of the AB and CRs for the bx1

, bx2
; and cI in 3 time 

points conditions were similar (see Appendix C).
Table 3 shows the Type I error rates of the cS for 

estimators with misspecified DEs under the 6 time 
points conditions over 100 replications. As the two-step 
and the three-step estimators share the same step-one 
model, we present the results of the step-one model 
(Step-one C) and the one-step estimator (One-step C) 
when the DEs are misspecified (specification C). The 

results show no considerably inflated Type I error rates 
across the conditions. The type I error rates are close to 
the expected value of 0.05 except in the unequal mixing 
ratio, large sample size, and well-separated classes con
ditions. The type I error rates of the cS in 3 time points 
are similar (as shown in Appendix C). We also 
inspected the mean square value of all interested 
parameters, the results are in line with the AB, CRs, 
and SE/SD values as shown in Appendix D.

Given the possibility of model misspecification in 
the applied settings, we ran a robustness check to 
assess the model performance when we not only mis
specify the specific location of DEs but also the cova
riates with DEs, namely, we model the DEs on the 
latent intercept and slope from the covariates that 
only predict the class membership. The results are 
consistent with study 2, the two-step and three-step 
estimators are more robust than the one-step estima
tor when models are misspecified. We refer to the 
robustness check 2 in the supplementary material for 
more information.

Study 3: Population model III with covariates 
effects on class membership and latent intercept 
and slope

In study 3, data were sampled from the population 
model III where x1 affects the LC membership, while 

Figure 5. Boxplots of relative efficiency for regression coeffi
cients of the latent class variable (bx1 

and bx2
) averaged over 

8 simulation conditions and 100 replications for study 2. SE/SD 
is the ratio of standard error versus standard deviation. The 
bold models are the estimators with correctly specified direct 
effects in study 2 (specification B).

Figure 6. Boxplots of relative efficiency for the regression 
coefficient of latent intercept variable (cI) averaged over 2 
classes, 8 simulation conditions, and 100 replications. SE/SD is 
the ratio of standard error versus standard deviation. The bold 
models are the estimators with correctly specified direct effects 
in study 2 (specification B).
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x2 predicts the LC membership and also has DEs on 
the latent intercept and slope factors. Therefore, speci
fication C is the correct way to specify the DEs. Table 
4 presents the AB and 95% CI of the CRs for covari
ate effects on LCs (i.e., the bx1 

and bx2
) under the 6 

time points conditions. The results were similar to 
study 2. For the bx2

; compared to ignoring the DEs 
(specification A), the performance of all three estima
tors systematically improved when we specified the 
DEs (specification B and C).

Concerning the design factors, the performance of 
all three estimators improved in well-separated class 
conditions, independent of the sample size and mixing 
ratio. Note that, when the DEs are misspecified (speci
fication B), all three estimators tend to overestimate 
the bx2 

under conditions of moderate class separation 
and unequal mixing ratio conditions, in terms of AB 
range from 0.11 to 0.14 and lower CRs. For bx1

; akin 
to results in study 2, all estimators performed system
atically well in each condition, with negligible bias 
ranging from 0.00 to 0.04, and the nominal level of 
CRs falls into the CI. The results of the bx1 

and bx2 
in 

3 time points were similar (see Appendix C).
Figure 7 displays the boxplot for SE/SD ratios 

reported at each replication in study 3. The results 
were averaged over the sample size, the mixing ratio, 
and the class separation conditions. We can observe 
similar results as in Study 2. Over 3 and 6 time points 
conditions, all estimators tend to underestimate the 
SE/SD values of bx1 

except for the one-step estimator 
with correctly specified DEs (specification C). When 
we specify DEs, the one-step estimator performed the 
best, closely followed by the three-step and the two- 
step estimators. For the bx2

; all estimators were effi
cient except for the three-step estimator that slightly 
overestimates the SE values in 3 time points condi
tions (for the detailed SE/SD in each simulated condi
tion, see Appendix E).

For the cI; the results in Table 4 show that all esti
mators with correctly specified DEs (specification C) 
performed systematically better than estimators with 
misspecified DEs (specification B) with regard to 
approximately unbiased parameter estimates and 

nominal level of CRs over the sample size, the class 
separation, and the mixing ratio conditions. The 
results for the 3 time points are presented in 
Appendix C. Similar results were observed from the 
SE/SD values reported at each replication averaged 
over 8 simulated conditions and 2 classes in Figure 
8a, The estimators with specification C were more 
efficient concerning SE estimates.

Next, for the cS; we can see that all three estimators 
performed well with unbiased parameter estimates 
and the CRs reaching the nominal level for all simu
lated conditions and classes. For the SE estimators of 
cS; as shown in Figure 8b, all estimators with specifi
cation C performed well and tend to slightly under
estimate the SE, over 8 simulated conditions and 2 
classes. The results at 3 time points are presented in 
Appendix C. We also inspected the mean square value 
of all interested parameters, the results were in line 
with the AB, CRs, and SE/SD values as shown in 
Appendix D.

Real data example

In this paper, we applied all three estimators with dif
ferent specifications of DEs on a real data example (9 
models in total), which came from The China Health 
and Retirement Longitudinal Study (CHARLS; Zhao 
et al., 2013). This study focuses on the Chinese popu
lation aged over 45 years, understanding the socioeco
nomic determinants and outcomes of aging. CHARLS 
adopted a four-stage probability sampling procedure 
to ensure its nationally representative sampling. The 
baseline data were collected from subjects by personal 
interview in 2011, and the second, third, and fourth 
data waves were collected in 2013, 2015, and 2018 
(Zhao et al., 2014). This analysis uses data or informa
tion from the Harmonized CHARLS dataset and 
Codebook, Version D, as of June 2021 developed by 
the Gateway to Global Aging Data. The development 
of the Harmonized CHARLS was funded by the 
National Institute on Aging (R01 AG030153, RC2 
AG036619, R03 AG043052). For more information, 
we refer to their website.3

Table 3. The type I error rate values over 100 replications for regression coefficients of the latent slope (cS), in 6 time points con
ditions for study 2.

Mixing ratio ¼ 0.50/0.50 Mixing ratio ¼ 0.30/0.70

High entropy Moderate entropy High entropy Moderate entropy

N¼ 1000 N¼ 500 N¼ 1000 N¼ 500 N¼ 1000 N¼ 500 N¼ 1000 N¼ 500

One-step C 0.07 0.07 0.05 0.07 0.10 0.05 0.03 0.07
Step-one C 0.07 0.07 0.05 0.07 0.10 0.05 0.03 0.09

Note. One-step C is the one-step estimator model of the direct effects on both growth factors (specification C). Step-one C is the step-one model of the 
two-step and three-step estimators with specification C. N is the total sample size.
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Previous studies on CHARLS (Chen et al., 2024) 
detected different cognitive function trajectories of 
aging people with diabetes. The participants are classi
fied as having diabetes based on their fasting plasma 
glucose (FPG) >¼ 126mg=dl measured after at least 
8 h of fasting, or glycosylated hemoglobin (HbAlc) >
¼ 6:5% (Bai et al., 2021; Roden, 2016) at baseline. We 
excluded participants with less than two follow-up 
repeated measures of cognitive function and with 
missing values in baseline covariates, age and educa
tion level. Data from 1259 participants were analyzed 
as part of the final sample.

For repeated measures, we selected four items to 
capture two dimensions of cognitive function, namely 
mental intactness and episodic memory. Specifically, 
items of date naming, drawing pictures, and serial 
subtracting 7 from 100 assessed mental intactness, 
item scores range from 0 to 11, and items of word 
recall (immediate and delayed) evaluated the episodic 
memory, which scores from 0 to 10. In line with pre
vious studies, we computed the total score of cognitive 
function by summing the scores of mental intactness 
and episodic memory, ranging from 0 to 21. Higher 
scores reflect better cognitive function. Covariates 
were also chosen and re-coded following previous 
applied research. Two covariates were selected, 

including age and education level at baseline. 
Education level included three categories: no formal 
education, primary school, and middle school and 
above. The age was divided into a young group aged 
between 45 and 59, a middle group aged between 60 
and 74, and an old group aged above 74.

Figure 7. Boxplots of relative efficiency for regression coeffi
cients of the latent class variable (bx1 

and bx2
) averaged over 

8 simulation conditions and 100 replications for study 3. SE/SD 
is the ratio of standard error versus standard deviation. The 
bold models are the estimators with correctly specified direct 
effects in study 3 (specification C).

Figure 8. Boxplots of relative efficiency for the regression 
coefficient of latent intercept (cI; Figure 8a) and latent slope 
(cS; Figure 8b) variables averaged over 2 classes, 8 simulation 
conditions, and 100 replications. SE/SD is the ratio of standard 
error versus standard deviation. The bold models are the esti
mators with correctly specified direct effects in study 3 (specifi
cation C).

3See https://g2aging.org/.

16 Y. LIU ET AL.

https://g2aging.org/.


We follow the standard recommendation of Masyn 
(2017) and Diallo et al. (2017) to fit an unconditional 
GMM during the class enumeration process. A two- 
class model was selected in terms of fit measures 
(Bayesian information criterion [BIC]¼ 19,328.23, 
Vuong-Lo-Mendell-Rubin test [VLMR]¼ 91.18, 
p< 0.01; as shown in Appendix F). The class sizes of 
the two latent classes are close, and the specific item’s 
score of the two-class model can be found in 
Appendix F. We labeled the first class as a moderate- 
decrease class, with a low cognitive function score at 
baseline and gradually decreased in the following 
waves. The second class, labeled high-stable, had a 
high cognitive function at baseline and the function 
score remained stable. Note that a three-class model 
was favored in previous literature (Chen et al., 2024). 
Here, we chose a more parsimonious model for illus
tration purposes.

To identify the existence of the DEs from covari
ates to growth factors, we follow the strategy of 
Masyn (2017) on detecting DEs in LCA. Thus, we 
estimated a two-class GMM that specified all the 
potential covariate effects on the latent class variable 
and growth factors by using the one-step estimator. 
The results revealed that the education level signifi
cantly impacts the intercept of cognitive function tra
jectories and class membership, while age only 
impacts class membership. Note that, as there are no 
optimal methods in detecting DEs in the GMM, we 
adopted the commonly used method (Masyn, 2017) in 
the LCA for illustration in this section. In this paper, 
we focus on the accuracy of parameter recovery and 
assume the covariate with DEs is prior knowledge. 
Developing methods for detecting DEs in the GMM 
remains an important direction for future research.

After identifying the latent classes, we extended the 
unconditional GMM by incorporating baseline covari
ates, which were estimated by using three estimators 
with three different specifications. For all three esti
mators, we ignored the DEs in specification A, mod
eled the DEs from the education level on the latent 
intercept in specification B, and modeled the DEs 

from the education level on both the latent intercept 
and slope in specification C. The effect of education 
level and age on the latent class variables was modeled 
across all specifications. As shown in Table 5, we pre
sent the model comparison of the one-step and the 
two-step estimators with varying specifications. 
Compared to estimators with specification A, a signifi
cant decrease in the log-likelihood value can be 
observed from both estimators with specification B, 
which is also reflected in other fit measures, e.g., BIC, 
AIC, and AIC3. Moreover, there is no significant 
improvement in model fit between estimators with 
specifications B and C, in terms of the presented fit 
measures. Note that we can not compare the three- 
step estimator as the models with varying specifica
tions are not nested.

Next, we focused on the estimated regression coef
ficients of covariates on latent class variables for all 
estimators with different specifications, as shown in 
Table 6. The education level has a significant effect on 
class membership with all three estimators. As we 
applied effect coding on both covariates, participants 
with an education level of middle school and above 
tended to belong to a high-stable class compared to 
participants with the average education level, with 
higher baseline cognitive function and remaining sta
ble across all waves. In contrast, participants with no 
formal education tend to belong to a moderate- 
decrease class compared to participants with the aver
age education level, with lower baseline cognitive 
function and gradually decreasing cognitive function. 
For the one-step, the two-step, and the three-step esti
mators, the effects of education level are similar, and 
the effect of education level decreased but was still 
significant when we modeled DEs. Age has a signifi
cant effect on class membership with all three estima
tors. Specifically, compared to participants with 
average age, participants aged over 75 tend to belong 
to a moderate-decrease class with lower cognitive 
function over time, and younger participants tend to 
belong to a high-stable class. Using all three 

Table 5. Model fit statistics for the One-step and the Two-step estimators.
Log-likelihood BIC AIC AIC3 df difference VLMR p

One-step A −9378.24 18,884.96 18,792.48 18,810.48
One-step B −9325.48 18,808.00 18,694.96 18,716.96 4.00 105.51 0.00���

One-step C −9325.37 18,836.33 18,702.74 18,728.74 8.00 0.22 0.99
Two-step A −9384.23 18,804.14 18,778.45 18,783.45
Two-step B −9339.03 18,713.75 18,688.06 18,693.06 0.00 90.39 0.00���

Two-step C −9339.66 18,715.01 18,689.32 18,694.32 0.00 −1.26 0.75

Note.One-step A, One-step B, and One-step C are the one-step estimators ignoring the direct effects (DEs; specifications A), specifying the 
DE on the latent intercept (specification B), and on both growth factors (specification C), respectively. Two-step A, Two-step B, and 
Two-step C are the two-step estimators with specifications A, B, and C, respectively. BIC is the Bayesian information criterion. AIC is the 
Akaike information criterion. df different is the difference in the degree of freedom between the two models. VLMR is the Vuong-Lo- 
Mendell-Rubin test score. �p < 0:05; ��p < 0:01, ���p < 0:001:
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estimators with varying specifications of DEs, the 
same overall conclusions are reached.

Table 7 presents the regression coefficients of cova
riates estimated by different estimators with varying 
specifications of DEs on latent intercept and slope 
variables. The education level has a significant effect 
on the latent intercept in the high-stable class for all 
three estimators. Within the high-stable class, 
Participants with no formal education tend to have 
lower cognitive function at baseline. For both classes, 
participants with education levels of middle school 
and above tend to have higher cognitive function at 
baseline. The estimated regression coefficients of edu
cation level on latent intercept are not significant, 
except for the coefficient estimated by the two-step 
and the three-step estimators at the education level of 
middle school and above in the high-stable class. And 
the estimated regression coefficients are larger using 
the two-step and the three-step estimators than the 

coefficients estimated by the one-step estimator. In 
general, there is no significant difference in the 
growth rates of cognitive function trajectory for par
ticipants with varying education levels across the two 
classes.

Discussion

In this article, we proposed a two-step estimator for 
the GMMs with covariates, and we considered a com
mon situation in GMMs where DEs are present 
between the covariates and the growth factors within 
each class. We further proposed applying the DE 
modeling approach as presented by Vermunt and 
Magidson (2021a) for the stepwise estimators.

We compare our proposed method with currently 
available estimators in estimating GMMs, namely, the 
one-step and the three-step estimators. The one-step 
estimator is the FIML estimator, where all of the 

Table 6. The Estimated regression coefficients (standard error) of the education level and age on the latent class variable using 
different estimators with varying specifications of direct effects.

Education level Age

Models No formal education Primary school Middle school and above 45 − 59 60 − 74 >¼ 75

One-step A −1.75��� (0.32) 0.06 (0.17) 1.69��� (0.22) 0.40� (0.19) −0.14 (0.11) −0.54��� (0.12)
One-step B −0.75��� (0.20) 0.07 (0.15) 0.69��� (0.17) 0.47�� (0.17) 0.10 (0.10) −0.58��� (0.11)
One-step C −0.71�� (0.25) 0.05 (0.21) 0.66�� (0.22) 0.48�� (0.17) 0.11 (0.10) −0.58��� (0.12)
Two-step A −2.39�� (0.80) 0.37 (0.41) 2.02��� (0.42) 0.41� (0.19) 0.14 (0.12) −0.55��� (0.13)
Two-step B −0.99��� (0.22) 0.07 (0.13) 0.91��� (0.13) 0.40� (0.17) 0.05 (0.11) −0.46��� (0.13)
Two-step C −0.52��� (0.09) −0.12 (0.08) 0.64��� (0.09) 0.30 (0.10) −0.01 (0.09) −0.29�� (0.10)
Three-step A −2.31��� (0.83) 0.20 (0.45) 2.11��� (0.55) 0.37 (0.27) 0.17 (0.16) −0.54�� (0.18)
Three-step B −0.97� (0.40) 0.05 (0.22) 0.92��� (0.25) 0.40 (0.34) 0.05 (0.20) −0.44� (0.23)
Three-step C −0.51�� (0.17) −0.13 (0.13) 0.65��� (0.15) 0.29 (0.28) −0.01 (0.17) −0.28 (0.18)

Note. One-step A, One-step B, and One-step C are the one-step estimators ignoring the direct effects (DEs; specifications A), specifying the DE on the latent 
intercept (specification B), and on both growth factors (specification C), respectively. Two-step A, Two-step B, and Two-step C are the two-step estimators 
with specifications A, B, and C, respectively. Three-step A, Three-step B, and Three-step C are the three-step estimators with specifications A, B, and C, respect
ively. �p < 0:05; ��p < 0:01, ���p < 0:001:

Table 7. The estimated regression coefficients (standard error) of education level using different 
estimators with varying specifications of DEs on latent intercept and slope variables.

Education level

Models No formal education Primary school Middle school and above

Latent intercept variable
High-stable
One-step B −1.78��� (0.26) 0.04 (0.23) 1.72��� (0.38)
One-step C −1.76��� (0.29) 0.05 (0.28) 1.71��� (0.42)
Step-one B −4.77��� (0.48) 1.76 (0.27) ��� 3.00��� (0.25)
Step-one C −4.05��� (0.44) 1.46 (0.28) ��� 2.60��� (0.23)
Moderate-decrease
One-step B −0.93 (0.55) −0.16 (0.28) 1.09��� (0.31)
One-step C −0.96 (0.58) −0.16 (0.30) 1.13��� (0.32)
Step-one B −0.10� (0.39) −0.07 (0.28) 1.07� (0.45)
Step-one C −0.56 (0.45) −0.28 (0.32) 0.84 (0.48)
Latent slope variable
High-stable
One-step C −0.05 (0.13) 0.01 (0.11) 0.05 (0.18)
Step-one C −0.36 (0.21) 0.14 (0.92) 0.22� (0.10)
Moderate-decrease
One-step C −0.03 (0.28) 0.02 (0.15) 0.01 (0.16)
Step-one C −0.12 (0.18) −0.03 (0.12) 0.15 (0.19)

Note. One-step B and One-step C are the one-step estimators specifying the DE on the latent intercept (specification B), 
and on both growth factors (specification C), respectively. Step-one B and C are the step-one models of the two-step and 
three-step estimators with specifications B and C. �p < 0:05; ��p < 0:01, ���p < 0:001:
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covariates are incorporated into the GMMs at once. 
For the three-step estimator, we also apply Vermunt 
and Magidson (2021a) proposed modeling strategy for 
estimating the DEs in latent class analysis (LCA) on 
the framework of the GMMs. For the three-step esti
mator, the step-one model is equivalent to the pro
posed two-step estimator. Then, we compute the 
conditional posterior probability of subjects given by 
the covariates with DEs at step two. In the step-three 
model, we estimate the class proportions conditional 
on all covariates (including the covariates with DEs) 
to address the overestimation of the covariate effect 
on class membership. As there is rarely prior know
ledge on how to specify DEs in real settings, we also 
investigate how different specifications of DEs can 
influence the performance of different estimators, 
including ignoring, correctly specifying, and misspeci
fying the DEs.

The results of our simulation studies show that all 
three estimators work comparably well in the absence 
of the DEs from covariates on the growth factors. In 
the presence of DEs, ignoring the DEs leads to severe 
bias in the estimated parameters of the three estima
tors. The two-step and three-step estimators perform 
comparably with biased parameter estimates and out
perform the one-step estimator. The one-step estima
tor is most sensitive to misspecification with 
substantial bias and the lowest coverage rates, espe
cially when the level of class separation is moderate. 
When the DEs are specified, either correctly specified 
or over-specified, all estimators perform better and 
comparably well in terms of unbiased parameter esti
mates and coverage rates close to the nominal level. 
The results are in contrast to Diallo and Lu (2017), 
whose results showed that the three-step estimator 
with specified DEs performed worse than the one-step 
estimator when estimating the covariate effects on the 
LC variables. While Diallo and Lu (2017) used a naive 
approach to modeling DEs, they ignored the indirect 
effect through the LCs in the step one model. This 
results in overestimation of DEs on the growth fac
tors. By using the approach of Vermunt and 
Magidson (2021a), unbiased estimates are obtained 
using both stepwise estimators. Furthermore, when we 
specify the plausible DEs path in Study 2, all three 
estimators are robust to misspecification in terms of 
acceptable type I error rates. However, in Study 3, 
when we under-specify the DEs, all estimators tend to 
overestimate the covariate effects on the LCs, leading 
to biased parameter estimates. Similar results are 
found by Di Mari and Bakk (2018), which investigates 
the performance of estimators on the Latent Markov 

models with varying specifications of DEs. They rec
ommend that overspecifying the DEs is safer than 
underspecifying them when there is poor knowledge 
of which covariates could have DEs in the Latent 
Markov modeling. A similar strategy can also be 
applied in the GMMs. Moreover, the one-step estima
tor has higher type I error rates than the two-step and 
the three-step estimators when the DEs are 
mispecified.4

In this article, we also investigated the efficiency of 
different estimators by evaluating the SE/SD values. It 
turns out that the two-step and the three-step estima
tors are less efficient than the one-step estimator 
when the DEs are specified (either correctly specified 
or misspecified), tending to underestimate the SE val
ues over all simulation conditions. Nevertheless, it is 
typical for step-wise estimators to slightly underesti
mate the SE values (Bakk & Kuha, 2018; Vermunt, 
2010). The step-wise estimators, when obtaining the 
Hessian matrix of the last step model, ignore the vari
ability in the step one estimates, treating those values 
as known, and thus ignoring the variance due to 
uncertainty about the step one parameters. Currently, 
approaches of correcting SEs in step-wise estimators 
are available for simpler LC models (Bakk & Kuha, 
2018), but their extension to multiple LVs in 
GMM(e.g., latent intercept and slope) is not straight
forward. Based on our simulation results, we do not 
recommend relying on the SE estimates based on the 
step-two Hessian matrix provided by the software, 
especially under the low-entropy conditions, and 
future research is needed to develop an accurate SE 
estimator. Additionally, introducing Bayesian inferen
tial methods in GMMs to better account for the 
uncertainty is another possible solution, or alterna
tively, investigating the use of bootstrap standard 
errors.

In sum, when there are candidates of covariates 
with DEs but the specific location of DEs is unknown, 
we recommend using the one-step estimator with 
overfitting DEs on both growth factors, in terms of its 
better performance in efficiency and unbiased esti
mates, and acceptable type I error rates. When there 
are no clear candidates of covariates with DEs or for 
exploratory purposes, we recommend applying the 
two-step and the three-step estimators in terms of 
their robustness against model misspecification.

This article considers the number of classes and the 
DEs as known, and we chose a medium size of DEs on 
the growth factors. However, this information is often 

4See also the results of the Robustness Check 2 in the supplementary 
material.
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not available and needs to be investigated in many 
applied research contexts. In simple LC models, likeli
hood ratio test and residual statistics (i.e., bivariate 
residuals[BVR] and expected parameter change[EPC] sta
tistics) are applied to identify the DEs from covariates to 
indicators (Bakk, 2024; Di Mari et al., 2023; Oberski 
et al., 2013). However, as the growth factors are latent 
variables in GMMs, the BVR can not be implemented. 
Moreover, penalization methods can also be a possible 
way to select covariates and detect significant DEs. The 
performance of other indices and methods in the GMM 
framework with varying effect sizes of DEs has not been 
studied yet. In this article, the method used to detect DEs 
in the real data example is not ideally suited for GMM 
and was employed solely for illustrative purposes. Our 
main interests focused on parameter estimation accuracy 
and efficiency over different estimators. Therefore, we do 
not specifically recommend its use for applied research. 
For the identification of DEs, the sensitivity of the one- 
step estimator when both the covariates and location of 
DEs are misspecified, can be beneficial to identify the 
presence of DEs, though this needs further investigation 
in the future.

In addition, this article focuses on a comprehensive 
evaluation of parameter recovery for different estimators 
when modeling DEs in GMM. To manage the scope of 
the simulations, class enumeration is not addressed. 
Nonetheless, class enumeration in GMM is a crucial and 
complex issue. Prior research in factor mixture models 
(FMM) has suggested that class enumeration should be 
conducted in the presence of covariates (Wang et al., 
2023). In contrast, a substantial body of work has recom
mended excluding covariates during class enumeration, 
due to the heightened risk of model misspecification 
(Diallo et al., 2017; Lubke & Muth�en, 2005; Nylund 
et al., 2007; Vermunt, 2010). Moreover, Stegmann and 
Grimm (2018) noted that while including covariates can 
improve class enumeration, it may also impair the mod
el’s ability to recover the true number of classes. Given 
these conflicting findings, we believe that further detailed 
investigation into the role of covariates in class enumer
ation is warranted, especially in the presence of model 
misspecification.

Our results also show that the performance of the 
one-step estimator is substantially affected by the level of 
class separation when the DEs are ignored, while it is 
unaffected with specified DEs. The two-step and the 
three-step estimators are quite sensitive to the level of 
class separation across varying specifications of DEs. 
Their performance systematically improved when the 
classes became more separated, yielding lower bias and 
higher coverage rates with smaller confidence intervals. 

As previous research shows the step-wise estimator is not 
recommended under low class separation conditions 
(Vermunt, 2010), we only consider moderate and high 
levels of class separation. However, in the applied setting, 
weak class separation can occur. For this case, further 
research can investigate whether using Bayesian methods 
in step one could improve the performance of two-step 
estimation in the context of GMMs.
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Appendix A. Evaluation criteria

The regression parameters and standard error estimates of 
covariates were examined in terms of the absolute bias 
(AB), mean square error (MSE), 95% confidence interval 
(CI) of coverage rate (CR), and standard error ratio (SE/ 
SD). The formula of AB, MSE, and the SE/SD of the interest 
parameter over 100 replications are as follows,

ABðĥÞ ¼
PS

s¼1jĥs − hj

S
, 

MSEðĥÞ ¼
PS

s¼1ðĥs − hÞ
2

S
:

PS
s¼1SEðĥsÞ=S

SDðĥÞ
, 

where h, ĥ and ĥs are population value of the interested 
parameter, the estimated h and its value from the sth repli
cation, s is the number of the current replication 
(s ¼ 1, 2, :::, S). We expect the AB and MSE values to be 
close to 0, reflecting an accurate parameter estimator, and 
the SE/SD value to be 1, reflecting a robust SE estimator. 
We compute the 95% Wilson (1927) CI of CR, and we 
expect the nominal level of CR, which is 95%, to fall into 
its CI.

Appendix B. Manipulated factors

We present the population parameters chosen for manipu
lating mixing ratios and class separation levels.

� Mixing ratio: For class 1 and class 2: (1) 50%, 50%, by 
manipulating coefficient b0 ¼ 0:75 for Study 1 and b0 ¼

−1:50 for studies 2 and 3; and (2) 30%, 70%, by setting 
b0 ¼ 1:61 for Study 1 and b0 ¼ −0:43 for studies 2 and 
3, respectively.

� Class separation: In study 1, a
ð1Þ
0 ¼ 1:5, a

ð2Þ
0 ¼ −1:5 in 

medium condition, a
ð1Þ
0 ¼ 3, a

ð2Þ
0 ¼ −3 in high condi

tion. In studies 2 and 3, a
ð1Þ
0 ¼ 0:5, a

ð2Þ
0 ¼ −0:5 in 

medium condition, a
ð1Þ
0 ¼ 1:5, a

ð2Þ
0 ¼ −1:5 in high 

condition.
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