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aRadboud University Medical Center; bUniversity of Oslo; cLeiden University; dUniversity of Cambridge 

ABSTRACT 
Statistical models to analyze longitudinal data often include parameters that capture temporal 
dependencies. These dynamics parameters are typically thought to operate independently of the time 
series value. Here, we argue that this leads to overlooking important information on psychological 
processes. We propose the DYNamics of ASymmetric TIme series (DYNASTI) approach, allowing 
dynamics parameters to differ above and below the time series mean. Through extensive simulations, 
we show that DYNASTI implementations of two commonly-used time series models (DSEM and 
RI-CLPM) adequately recover symmetric and asymmetric temporal dynamics. Importantly, we also 
show that assuming symmetric dynamics (as in the vast majority of the literature) when processes are 
in fact asymmetric leads to incorrect conclusions about these dynamics. We further illustrate how 
DYNASTI implementations can lead to new insights in three empirical examples. We believe asymmet
ric dynamics are widespread and hope, by providing open and easy-to-apply code, to aid researchers 
in uncovering them.
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1. Introduction

A central goal in psychology is to understand how behavior 
and cognition evolve over time. Accordingly, researchers 
increasingly collect and analyze data across multiple time 
points (Molenaar, 2004). Such time series data are commonly 
referred to as “longitudinal” with a moderate number of waves 
and “intensive longitudinal” with many occasions. Many ana
lysis methods exist that capture temporal dynamics in such 
time series data. These methods generally implicitly assume 
that the parameters capturing temporal dynamics are inde
pendent of the current value in the time series. In this article, 
we argue that this assumption often does not hold and, more 
importantly, that valuable information on psychological proc
esses is overlooked when potential asymmetry in temporal 
dynamics is ignored. We also show through simulations that 
standard analysis tools do not provide warnings with respect 
to the presence of asymmetric dynamics. We provide examples 
of asymmetric dynamics, which we believe are widespread, and 
invite researchers to think about potential asymmetric tem
poral dynamics in their research field. To accommodate 
applied researchers, we provide openly accessible commented 
code and an online tutorial to run DYNASTI models enabling 
them to uncover such asymmetric dynamics. 

A relatively straightforward way of analyzing time series 
data is to fit a regression model including time as a 

predictor. In this model, one could interpret the regression 
coefficient of the time effect to assess how the variable of 
interest increases or decreases over time. Although such a 
simple model allows one to investigate global temporal 
dynamics (increases or decreases), it does not include 
parameters to capture deviations or fluctuations around this 
global time course. That is, it assumes deviations from the 
average time effect are noise and therefore captures these 
fluctuations in the error (or residual) variance term.

However, these fluctuations may reflect meaningful tem
poral dynamics. That is, they may hold valuable information 
about the person, or process, one is modeling. For instance, 
mood fluctuations may serve as a risk factor for mood dis
orders (e.g., Bonsall et al., 2012; Hofmann & Meyer, 2006; 
Holmes et al., 2016; Koval & Kuppens, 2024) and fluctua
tions in cognitive performance can be indicative of attention 
problems (e.g., Aristodemou et al., 2024; Kofler et al., 2013; 
Kuntsi & Klein, 2012) as well as developmental leaps 
(Verspoor et al., 2008). To capture this information, more 
advanced statistical models allow us to model these fluctua
tions in more detail (e.g., McArdle, 2009), including 
Dynamic Structural Equation Models (DSEM; Asparouhov 
et al., 2018; Jongerling et al., 2015; McNeish & Hamaker, 
2020), Random-Intercept Cross-Lagged Panel Models 
(RI-CLPM; Hamaker et al., 2015), STARTS models (Kenny 
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& Zautra, 2001), ALT models (Bollen & Curran, 2004), 
latent change score models (e.g., Usami et al., 2015), ARMA 
models (e.g., Hamaker et al., 2002), LCM-SR models 
(Curran et al., 2014) and many more. Although the precise 
parameterization differs across models, the general charac
teristics are similar: parameters capture the extent to which 
the value of some variable at a current time point governs 
the rate or nature of change in the same, or another, vari
able at future time points.

2. Modeling (A)Symmetric Dynamics

2.1. Modeling Symmetric Dynamics Using an AR Model

As our motivating example, we will focus on arguably the 
simplest example of a temporal dynamics parameter, namely 
the autoregressive (AR) parameter. Conceptually, the AR 
parameter captures the extent to which the time series value 
at a given time point is governed by a previous value.1 This 
parameter has been described by various terms, including 
“autoregression” (e.g., McArdle, 2009), “autocorrelation” 
(e.g., Bringmann et al., 2017), “self-feedback” (e.g., Estrada 
& Ferrer, 2019), “carry-over” (e.g., De Haan-Rietdijk et al., 
2016b), and “inertia” (e.g., Hamaker & Grasman, 2015). 
Models including AR parameters have been successfully 
applied to show that, for example, affective (Kuppens et al., 
2010; Wang et al., 2012) and stressed (Ekuni et al., 2022; 
Sperry & Kwapil, 2022) states tend to persist over longer 
periods of time, and that people tend to get stuck in soli
tude (Elmer et al., 2020).

Mathematically, a first-order autoregressive (AR1) model 
can be described as follows: 

yt ¼ lþ dt , (1) 

in which yt is the time series data, l is the time series 
mean, and dt the deviation from the mean at time point t.2

To capture fluctuations in y over time, variance in the devi
ations is explained by the autoregressive parameter /: 

dt ¼ /dt−1 þ �t , (2) 

where the residual �t indicates the deviation from the 
expected value after taking the autoregression into account. 
At the first time point (t ¼ 1), this formula reduces to d1 ¼ �1:

Substituting Equation (2) into (1), you get 

yt ¼ lþ /dt−1 þ �t: (3) 

As illustrated in Figure 1, by adding an AR parameter to 
the regression model, fluctuations, in this example of nega
tive affect, are captured by a parameter (/), considering 
them valuable sources of information instead of noise. Time 
series with positive AR values (such as the one in Figure 1) 
are characterized by prolonged periods above, or below, the 
time series mean. The higher the AR parameter, the longer 
these periods are. In the example in Figure 1, this means 

that people with higher AR parameters report more con
secutive time points above or below their average negative 
affect (i.e., above or below the horizontal blue line). AR val
ues may also be negative, which implies that deviations 
above (or below) the mean will be followed by values closer 
to the mean or, in case of highly negative AR values, even 
below (or above) the mean.

2.2. Capturing Asymmetric Dynamics Using Extended 
Time Series Models: The DYNASTI Approach

A problem with the AR model described in Section 2.1 is 
that it assumes symmetric temporal dynamics. In other 
words, deviations above and below a time series mean are 
treated as coming from the same distribution and contribute 
equally to the dynamics parameter. This implicit assumption 
is, in our view, almost never justified on substantive grounds.

Specifically, positive and negative deviations from a time 
series mean may hold distinct information about the psy
chological processes one is modeling. For instance, the 
mechanisms underlying emotional inertia (Koval & 
Kuppens, 2024; Suls et al., 1998) are likely different for posi
tive and negative deviations from the average (De Haan- 
Rietdijk et al., 2016a). That is, sequences of positive and 
negative days likely differ in their dynamics, mechanisms 
and consequences: healthy individuals likely experience pro
longed periods of positive days while quickly bouncing back 
after experiencing negative days. Also, these sequences have 
different consequences depending on the direction of the 
deviation: getting stuck in more negative mood may prompt 
the need for intervention whereas the same may not be 
needed for more positive mood. Another example of a 
process governed by asymmetric temporal dynamics is post- 
error slowing (e.g., Rabbitt & Rodgers, 1977): trials follow
ing an error (worse-than-average performance) induce a 
subsequent trial that is substantively slower than one’s aver
age. However, the reverse—that exceptional performance 
will lead to extra swift trials—is not necessarily true.

Figure 1. Example time series data (black) for negative affect values across 
time (/ ¼ 0:8); the horizontal blue line indicates predicted negative affect by a 
mean model; the orange line predicted with both mean and autoregression.

1We will ignore the distinction between first-order, and higher-order lag 
models (e.g., lag-2, etc.) without loss of generality.
2Note that, for simplicity and interpretability, we did not include a predictor 
of time and thus this model can only adequately be used to describe 
detrended data (see Hamaker & Dolan, 2009 for a critique).
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The basic point, that temporal dynamics parameters may 
differ depending on the values of the variable of interest, is 
not new. To our knowledge, it has been made first in the 
form of specifying a threshold in an AR model. Specifically, 
Tong (1978) (extended in Tong & Lim, 1980; Tsay, 1989, 
and more recently applied in Bonsall et al., 2012; De Haan- 
Rietdijk et al., 2016a; Hamaker et al., 2009; Holmes et al., 
2016) introduced the threshold autoregressive (TAR) model. 
In this model, the AR parameter depends on the value of 
the time series variable. Specifically, if the deviation from 
the time series mean at the previous time point (dt−1) 
is above a threshold (s), one autoregressive parameter 
applies (/above), and if this deviation is below a threshold, 
another autoregressive parameter applies (/below). Replacing 
Equation (2), for t ¼ 2, :::, T; we write 

dt ¼
/abovedt−1 þ �t if dt−1 > s

/belowdt−1 þ �t if dt−1 � s:

(

(4) 

A special case of the TAR model holds when s ¼ 0; rep
resenting the person- or unit-specific mean. In this scenario, 
we can distinguish the dynamics that govern the time series 
when a deviation is above the mean from the dynamics 
when the deviation is below the mean. Notably, this thresh
old of asymmetry will be person (or unit) specific—for 
instance, more sleep than average for one person may cor
respond to less sleep than average for another.

In the remainder of this article, we show how this variant 
of the threshold model, in which we allow for asymmetric 
temporal dynamics above and below the time series mean, 
can be implemented in commonly-used time series models, 
an approach we coin the DYNamics of ASymmetric TIme 
series (DYNASTI) approach, and provide evidence for 
asymmetric dynamics in several theoretically-plausible 
examples. To illustrate how a DYNASTI model works, an 
example time series governed by asymmetric parameters 

above and below the mean is shown in Figure 2. The above- 
mean autoregression for negative affect is highly negative, 
which results in the negative affect value dropping below 
the mean after a time point on which it was above the 
mean. This can also be seen from the blue line segments 
crossing the horizontal dotted line representing average 
negative affect. The below-mean autoregression, on the 
other hand, is highly positive, resulting in multiple subse
quent time points at which negative affect values are below 
the mean. This means that this subject quickly bounces 
back after experiencing high levels of negative affect (high 
negative above-mean autoregression) while they tend to 
experience prolonged periods of low levels of negative affect 
(high positive below-mean autoregression).

The manuscript is organized as follows. Below, we briefly 
describe two commonly-implemented classes of models. The 
first, a Dynamic Structural Equation Model (DSEM), is a hier
archical extension of the standard N¼ 1 AR model which is 
mainly used for univariate intensive longitudinal data (say >50 
time points). The second, a Random-Intercept Cross-Lagged 
Panel Model (RI-CLPM), is mostly used for multivariate longi
tudinal panel data (say 3–10 waves) in which one is interested 
in cross-lagged effects, that is, effects of one variable at the cur
rent time point on another variable at a future time point. For 
each model, we demonstrate how it can be extended to incorp
orate DYNASTI principles, how it can be implemented in open 
source code (Stan), and, through simulations, that the 
DYNASTI approach returns unbiased estimates both when data 
govern symmetric and asymmetric temporal dynamics. Finally, 
we provide three empirical examples how the DYNASTI 
approach can be used and will lead to new insights. These 
examples are accompanied by snippets of R code needed to run 
DYNASTI models, hopefully enticing researchers to play with 
the models themselves. Although we are not the first to propose 
neither threshold autoregressive (Tong, 1978; Tong & Lim, 
1980; Tsay, 1989) nor threshold cross-lagged parameters 
(Hamaker et al., 2010; Haslbeck & Ryan, 2022), they have rarely 
been used to answer practical research questions (but see 
Bonsall et al., 2012; Holmes et al., 2016). Here our goal is a) to 
focus on asymmetry above and below the time series mean and 
b) to make the DYNASTI approach relatively easy to implement 
and extend well beyond the N¼ 1 time series modeling within 
which it was first proposed.

3. Implementing the DYNASTI Approach for Two 
Commonly-Used Models

3.1. Implementing DYNASTI in a Univariate Example: 
Asymmetric Autoregression in Time Series Models

Dynamic Structural Equation Models (DSEMs; Asparouhov 
et al., 2018; Jongerling et al., 2015; McNeish & Hamaker, 2020) 
are hierarchical extensions of the AR model. They combine 
strengths from time series modeling, hierarchical modeling and 
structural equation modeling into a single comprehensive frame
work. That is, DSEMs allow one to account for dependencies in 
the data due to repeated measurements (time series modeling) 
and due to clustering of subjects (hierarchical modeling), and 
they allow one to incorporate latent variables into the model 

Figure 2. Example asymmetric time series of negative affect (black points) in 
which /above ¼ −0:8 and /below ¼ 0:8; the colored lines indicate which autore
gressive parameter is used to explain deviations at the current time point: blue 
for /above; indicating the deviation at the previous time point was positive (i.e., 
above the mean or the horizontal black dotted line), and red for /below; indicat
ing it was negative (i.e., below the mean).
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(structural equation modeling; McNeish et al., 2021). Often, 
DSEMs are implemented in Mplus (Asparouhov et al., 2018; 
McNeish & Hamaker, 2020), but implementations also exist in 
other coding languages including BUGS (De Haan-Rietdijk 
et al., 2016a; Jongerling et al., 2015) and Stan (Snijder, 2023). 
For our purposes, we will use Stan (Gelman et al., 2015), a flex
ible framework for Bayesian estimation accessible in R (R Core 
Team, 2024) through the rstan package (Stan Development 
Team, 2023). We use Stan because it allows for flexible 
implementation and estimation of a wide range of models, 
deals well with the challenges of, for example, estimating 
person-specific effects, allows for model-informed imputation 
of missing data, and comes with frequent updates and an 
active community. Also it is freely available, obviating the 
need for expensive proprietary software and making it more 
widely accessible to the research community. Although com
paring estimation performance of our Stan implementation 
to common Mplus implementations is beyond the scope of 
this article, we below provide extensive parameter recovery 
simulations that warrant interpretability of results. We also fit 
the DSEM to a dataset previously validated in Mplus and 
find comparable results (see Section 4), providing further 
support that our implementation performs well.

In the DYNASTI DSEM case, a time series of variable y 
for person i is governed by five parameters: the mean, two 
autoregressive parameters, the residual, and the trend. The 
mean indicates the average value of y; the autoregressive 
parameters indicate how the value of y on a given time 
point, above and below the time series mean, is associated 
with an in- or decrease at the next time point; and the 
residual indicates the deviation from the expected value at a 
given time point. The trend, indicating change over time, 
can either be modelled within the context of the model or 
removed beforehand (through detrending). For simplicity, 
we chose to illustrate our points for detrended data.3

Similar to the AR models presented in Section 2.1, a 
DSEM for the time series of y can be described as follows: 

yit ¼ li þ dit , (5) 

for i ¼ 1, :::, N subjects and t ¼ 1, :::, T time points, in 
which yit is the subject-specific time series data, li is the 
time series mean for subject i, and dit the deviation from 
the mean for subject i at time point t. To model asymmetric 
temporal dynamics, we explain variance in the deviation 
with autoregressive parameter /; which we estimate separ
ately for above- and below-average values of y. We do so by 
setting the threshold to zero, indicating the subject-specific 
mean: 

dit ¼
/above

i di, t−1 þ �it if di, t−1 > 0
/below

i di, t−1 þ �it if di, t−1 � 0,

(

(6) 

where we introduce a residual �it; indicating the deviation 
from the expected value after taking the value-specific autor
egression into account. At the first time point (t ¼ 1), this 
formula reduces to di1 ¼ �i1: For each subject, the residuals 

are assumed normally distributed with mean zero and vari
ance wi:

Assuming subjects are sampled from the same underlying 
population, we can increase statistical precision by utilizing 
information about that population in estimating subject-specific 
parameters (e.g., Efron & Morris, 1977; Katahira, 2016). That is, 
we explain the four (as we omit the trend) subject-specific 
parameters with a population-level parameter (c) and a subject- 
specific deviation from the population average (ui): 

li ¼ cl þ uli (7) 

/above
i ¼ c/above þ u/abovei (8) 

/below
i ¼ c/below þ u/belowi (9) 

wi ¼ varð�itÞ ¼ exp ðcw þ uwiÞ: (10) 

Note that the population-level residual variance (cw) and 
the subject-specific deviations (uwi) are estimated on a loga
rithmic scale. This enables us to assume these variables are 
normally distributed, simplifying the estimation process. As 
subject-specific effects may be correlated (e.g., that subjects 
with a high mean display low residual variance), we model 
the relationship between the mean, autoregression, and 
residual variance. To do so, we assume that the subject- 
specific deviations (i.e., uli; u/abovei; u/belowi; and uwi) are 
multivariate normally distributed with means zero and 
covariance matrix X:

3.1.1. Simulating and Recovering Parameters from a 
Univariate DSEM
Now that we have specified the DYNASTI DSEM model, we 
can examine how it works through simulations. We per
formed all simulations and statistical analyses using open 
source software R (R Core Team, 2024). Below we provide 
reproducible code to perform the simulations, to fit the 
models using rstan (Stan Development Team, 2023), to per
form model recovery, as well as empirical applications and a 
step-by-step tutorial (see https://osf.io/s2x3k) including how 
to structure data to allow the reader to conduct their own 
analyses. First, we examine how well our parametrization 
and implementation in rstan are able to recover the true 
model parameters, both in the standard (symmetric) as well 
as in the DYNASTI (asymmetric) model. More importantly, 
we also investigate the alternative scenarios—showing what 
happens if we estimate a symmetric model when the process 
is truly asymmetric and, conversely, what happens when we 
estimate a needlessly complex (asymmetric) model to data 
generated under a symmetric scenario. To do so, we gener
ated data with asymmetric temporal dynamics above and 
below the mean (that is, two, nonequivalent autoregressive 
parameters), and data with symmetric dynamics (that is, a 
single autoregressive parameter). To both types of data, we 
fit the proposed DYNASTI DSEM and a standard symmet
ric version of the model.

In the ideal scenario, when data are governed by asym
metric dynamics, we would recover the true values under 
the asymmetric model, but not under the standard model, 
resulting in model comparison favoring the asymmetric 

3We do provide code for modeling data with trend in our OSF repository: 
https://osf.io/hwmgk/.
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model. When data are governed by symmetric dynamics, we 
would expect similar degrees of model convergence for the 
standard and asymmetric model, with the asymmetric model 
estimating two identical autoregressive parameters and with 
model comparison favoring the simpler, symmetric DSEM.

3.1.2. Simulation Method
To test these expectations for a univariate DSEM, we gener
ated 500 datasets with N ¼ 50 subjects across T ¼ 100 time 
points each. As can be reproduced using the R code provided 
on https://osf.io/5vumh, we used a population-level mean (cl) 
of 2 and a low residual variance (cw ¼ log ð:01Þ).4 We used a 
low variance to ensure relatively little noise in the simulated 
data (see Online Supplementary Figures 3 and 4 for results 
with higher noise levels), enabling us to focus on recovery of 
the autoregressions. In case of symmetric data, we used a 
population-level autoregression (c/) of 0.5. In case of asym
metric data, we used two autoregressions with the same mean 
as in the symmetric case (c/above ¼ 0:35; and c/below ¼ 0:65). 
Subject-specific deviations (u’s) for all parameters were 
sampled from a multivariate normal distribution with means 
0, relatively small variances (varðuliÞ ¼ varð log ðuwiÞÞ ¼ 0:5 
and varðu/iÞ ¼ varðu/aboveiÞ ¼ varðu/belowiÞ ¼ 0:01), and moder
ate correlations between subject-specific deviations across 
parameters (i.e., 0.3). In R, this is accomplished using the 
mvrnorm() function of the MASS package (Venables & 
Ripley, 2002). In the asymmetric case, we generated deviations 
for each subject for each of the four parameters (mean, two 
autoregressions, and residual variance) by running u <- 
mvrnorm(Nsubj, rep(0,4), Omega) in the R console, 
where Nsubj is an integer indicating the number of subjects 
and Omega is the four-by-four covariance matrix of subject- 
specific effects.

Subject-specific parameters were determined by adding 
population-level parameters and subject-specific deviations (see 
Equations (7)–(10)). These simulation specifics resulted in 
subject-specific means mostly ranging between 0.5 and 3.5, sym
metric autoregressions mostly between 0.3 and 0.7, asymmetric 
autoregressions mostly between 0.15 and 0.55 for above-mean 
values and between 0.45 and 0.85 for below-mean values, and 
residual variances between 0.05 and 0.2. Subject-specific parame
ters were in turn used to generate time series data (see 
Equations (5) and (6)). In the asymmetric case, this is accom
plished in R by running the following code.

We generated data without missing values in the simula
tions; see the empirical applications in Section 4 for an 
example including missing data. On each dataset, for the 
DYNASTI and symmetric model, we ran four Markov 
Chain Monte Carlo (MCMC) chains with 5,000 iterations of 
which the first half was removed as burn-in, resulting in 
10,000 posterior samples per parameter. For details on the 
chosen true values, prior distributions, and model estima
tion, we refer to Online Supplementary Text 1.

We assessed model performance through parameter con
vergence, and model and parameter recovery. For each 
population-level parameter in each dataset, we determined 
whether our MCMC chains converged to a stable solution 
by assessing the R-hat statistic (Gelman & Rubin, 1992). 
This statistic compares the variance between MCMC chains 
to the variance within chains, with values above 1.1 indicat
ing unstable parameter estimates as chains converged to dif
ferent solutions. One way to obtain R-hat values in R is to 
print the summary of fit results by running print(fit, 
pars ¼ “gamma”), in which fit is the Stan fit object 
and pars indicates for which parameters one wishes to 
print results. As a measure of model recovery, we performed 
model comparison through Bayes Factors (BF) as obtained 
from the bridgesampling package (Gronau et al., 2020):

Following guidelines proposed by Jeffreys (1961), we 
interpreted BFs > 10 as strong evidence for the DYNASTI 
model, between 3 and 10 as moderate evidence in that same 
direction, and between 1 and 3 as anecdotal evidence. In 
case BFs were below 1, we interpreted them as strong (<1/10), 
moderate (1/10<BF < 1/3), or anecdotal (1/3<BF < 1) evi
dence in favor of the standard symmetric model. To assess 
parameter recovery, we extracted the 95% highest density 
interval (HDI) of the posterior distribution (as obtained 
from the MCMC samples) of each parameter using the 
quantile() function from the stats package (R Core 
Team, 2024). We then assessed whether zero fell within the 

# Create empty data matrix Y and predicted data matrix Y.hat (i.e., without
# noise). Nsubj indicates the number of subjects and Nobs the number of
# observations.
Y <- Y.hat <- matrix(NA, Nsubj, Nobs)

# Set the predicted value at the first time point to the subject-specific mean
Y.hat[,1] <- mu

# Sample first data point in which mu is a vector containing subject-specific
(continued)

# means and the rnorm() function is used to sample random error for all 
Nsubj # subjects based on their subject-specific residual variance psi.
Y[,1] <- mu + rnorm(Nsubj, 0, sqrt(psi))

for (i in 1:Nsubj) {           # Loop across subjects
for (t in 2:Nobs) {         # Loop across observations

# Predict outcome based on mean and value-based autoregression
Y.hat[i,t] <- mu[i] + phi_below[i] * (Y[i,(t-1)] - mu[i]) *

ifelse(mu[i] - Y[i,(t-1)] < 0, 0, 1) +
phi_above[i] * (Y[i,(t-1)] - mu[i]) *
ifelse(mu[i] - Y[i,(t-1)] < 0, 1, 0)

# Sample data point based on prediction Y.hat and the subject-specific
# residual variance psi
Y[i,t] <- rnorm(1, Y.hat[i,t], sqrt(psi[i]))

}
}

# Obtain marginal likelihoods of the symmetric and DYNASTI model
# in which fitStandard and fitDYNASTI are the Stan fit objects for the
# standard symmetric and DYNASTI model respectively.
llStandard = bridge_sampler(fitStandard)
llDYNASTI = bridge_sampler(fitDYNASTI)
# Compute Bayes Factor
bf (llDYNASTI, llStandard)

4Note this residual variance was transformed to a logarithmic scale to enable 
us to use a multivariate normal distribution for sampling subject-specific 
deviations.
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95% HDI and aggregated this number across the 500 data
sets to obtain a percentage between 0 (indicating very poor 
recovery) and 100 (indicating excellent recovery). For 
example, in R, running post¼extract(fit) gives you 
the posterior samples and quantile(post 

$gamma[,1], c(0.025,0.975)) in turn gives the 
95% HDI of the population-level mean.

3.1.3. Simulation Results
When data were governed by asymmetric temporal dynam
ics, the DYNASTI model was preferred over the standard 
symmetric model in almost all iterations: Bayes Factors pro
vided strong evidence in favor of the DYNASTI model 
(BF10 > 10) in 488 out of 500 iterations (97.6%). 
Furthermore, convergence of the population-level parame
ters was good: R-hat values were below 1.1 in all but eight 
iterations (98.4%). Finally, the true values of the population- 
level parameters lay within the 95 % highest-density interval 
(HDI) in 92.2–98.4% of the iterations (see Online 
Supplementary Table 1 for full results). Together, these 
simulation results indicate that the DYNASTI implementa
tion of a DSEM can adequately uncover asymmetric tem
poral dynamics. This even holds for small sample sizes (see 
Online Supplementary Figure 1), few time points (see 
Online Supplementary Figures 1 and 2), and high levels of 
noise (see Online Supplementary Figures 3 and 4); although 
estimates become more uncertain (as shown by increased 
variances across iterations) as a function of both smaller 
sample sizes and fewer time points.

When these asymmetric data were fit with a standard 
symmetric model, model convergence was good with R-hat 
values below 1.1 in all but two iterations (99.6%), suggesting 
this type of model misspecification need not generate telltale 
estimation problems. However, bias was induced in the 
autoregressive parameter (see Online Supplementary Table 1). 
As illustrated in Figure 3, the autoregressive parameter was 
estimated in between the two truly asymmetric ones, result
ing in the true values laying outside the 95% HDI in every 
single iteration. Importantly, the other parameter estimates 
were largely unbiased (with true values laying within the 
95% HDI in 93.2–96.8% of the iterations, see Online 
Supplementary Table 1). Together, these simulation results 
suggest that fitting a symmetric model to asymmetric data 
does not provide any signs of model misspecification, des
pite yielding fundamentally incorrect conclusions on the 
temporal dynamics. Coming back to our example in Figure 
2, if we fit the symmetric model to these asymmetric nega
tive affect data, the estimated autoregressive parameter is 
/ ¼ 0:18: This means we miss the seemingly healthy pattern 
of quickly bouncing back after experiencing higher-than- 
average levels of negative affect and of relatively stable peri
ods of lower-than-average levels.

So what happens when we fit a DYNASTI model to 
symmetric data? In terms of model convergence, the 
DYNASTI model performed well with R-hat values below 
1.1 in all but eight iterations (98.4%). Importantly, as 
shown in Figure 3 and Online Supplementary Table 1, the 
asymmetric model returned similar estimates for the two 

autoregressive parameters (as indicated by the overlapping 
distributions) and both contained the true symmetric 
autoregressive parameter in most cases (95.8–96.8%). Yet, 
model comparison favored the simpler, symmetric DSEM: 
Bayes Factors provided strong evidence in favor of the 
symmetric model (BF10 < 1=10) in 498 out of 500 itera
tions (99.6%). Based on these simulation results, we can 
conclude that fitting the DYNASTI model does not incur 
any drawbacks in terms of model convergence or param
eter estimates when data are truly symmetric. Also not 
with small sample sizes, few time points, or high levels of 
noise (see Online Supplementary Figures 1–4). Next, we 
examine how we may extend the logic of DYNASTI DSEM 
to bivariate panel data.

3.2. Implementing DYNASTI in a Bivariate Example: 
Asymmetric Cross-Lagged Parameters in Time Series 
Models

The same line of reasoning regarding asymmetric dynamics 
can be extended to research questions involving multiple 
variables. In many psychological analyses, researchers 
hypothesize that the value of one variable at a given time 
point will affect the value of another variable on a future 
time point. For instance, less sleep on a given day than a 
person’s average amount of sleep may be associated with 
more stress the next day (Ekuni et al., 2022). The temporal 
dynamics parameter that captures such dynamics between 
variables, called a cross-lagged or coupling parameter, may 
also depend on the direction of the deviation. For instance, 
sleep may affect one’s stress levels, but only if the deviation 
is negative (i.e., less sleep than average).

Figure 3. Recovered values of the population-level autoregressive parameters 
by the DYNASTI DSEM (top row) and standard DSEM (bottom row) when data 
govern asymmetric (left column) and symmetric (right column) temporal 
dynamics. Vertical dashed lines represent true values.
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As a multivariate example, we show how asymmetric 
temporal dynamics could be incorporated in a bivariate 
Random Intercept Cross-Lagged Panel Model (RI-CLPM; 
Hamaker et al., 2015; Mulder & Hamaker, 2021c). This 
structural equation model allows one to describe temporal 
dependencies between multiple, potentially latent, variables 
within subjects. The RI-CLPM is an extension of the stand
ard Cross-Lagged Panel Model that incorporates random 
intercepts to separate stable between-subject differences 
from the within-subject dynamics. Although RI-CLPMs 
have been implemented in many programming languages, 
including Mplus (e.g., Mulder & Hamaker, 2021b) and lav
aan (e.g., Mulder & Hamaker, 2021a), we again used Stan 
(Gelman et al., 2015) to flexibly illustrate the workings of a 
DYNASTI implementation of a RI-CLPM.

The time series data for two variables, x and y, can be 
described as 

xit ¼ lx þ gxi þ dxit (11) 
yit ¼ ly þ gyi þ dyit, (12) 

for i ¼ 1, :::, N subjects and t ¼ 1, :::, T time points, where 
xit and yit are the time series data of both variables, lx and 
ly are overall means,5 gxi and gyi are subject-specific devia
tions from the overall means, and dxit and dyit are the devia
tions from the expected value for subject i at time point t. 
The subject-specific deviations in means are assumed bivari
ate normally distributed with means zero and covariance 
matrix R:

To allow for asymmetric temporal dynamics above and 
below the mean in this bivariate case, we explain variance 
in the deviations (dxit and dyit) by introducing asymmetric 

autoregressive (/) and cross-lagged (b) parameters. Similar 
to the univariate DSEM with asymmetric dynamics (Section 
3.1), we specify that when the deviation from the expected 
value at the previous time point (dxi, t−1 and dyi, t−1) is below 
the mean, a given set of autoregressive and cross-lagged 
parameters apply, and if the deviation is above the mean, 
another set of parameters apply.6 We write the asymmetric 
dynamics as follows for dxit ðt ¼ 2, :::, TÞ;

dxit ¼

/above
xx dxi, t−1 þ babove

xy dyi, t−1 þ �xit if dxi, t−1 > 0 and dyi, t−1 > 0

/above
xx dxi, t−1 þ bbelow

xy dyi, t−1 þ �xit if dxi, t−1 > 0 and dyi, t−1 � 0

/below
xx dxi, t−1 þ babove

xy dyi, t−1 þ �xit if dxi, t−1 � 0 and dyi, t−1 > 0

/below
xx dxi, t−1 þ bbelow

xy dyi, t−1 þ �xit if dxi, t−1 � 0 and dyi, t−1 � 0

8
>>>>>><

>>>>>>:

(13) 

and equivalently for dyit ðt ¼ 2, :::, TÞ;

dyit ¼

babove
yx dxi, t−1 þ /above

yy dyi, t−1 þ �xit if dxi, t−1 > 0 and dyi, t−1 > 0

babove
yx dxi, t−1 þ /below

yy dyi, t−1 þ �xit if dxi, t−1 > 0 and dyi, t−1 � 0

bbelow
yx dxi, t−1 þ /above

yy dyi, t−1 þ �xit if dxi, t−1 � 0 and dyi, t−1 > 0

bbelow
yx dxi, t−1 þ /below

yy dyi, t−1 þ �xit if dxi, t−1 � 0 and dyi, t−1 � 0:

8
>>>>>><

>>>>>>:

(14) 

At the first time point ðt ¼ 1Þ; we have dxi1 ¼ �xi1 and 
dyi1 ¼ �yi1: The subject-specific residuals (i.e., �xit and �yit) 
are assumed bivariate normally distributed with means zero 
and covariance matrix W:

Figure 4. Recovered values of the autoregressive parameters by the asymmetric (top row) and symmetric RI-CLPM (bottom row) when data are governed by asymmetric (left 
column) and symmetric (right column) temporal dynamics. Vertical dashed lines represent true values. Panel (a) for variable X and panel (b) for variable Y.

5Note that this measurement model provides a simplified version of the 
RI-CLPM in which means are time-invariant (i.e., equal across time points).

6Again, note that this structural model provides a simplified version of the 
RI-CLPM in which the regression coefficients (i.e., the four /s and four bs) are 
time-invariant (i.e., equal across time points). It could be useful to use time- 
dependent coefficients, for example, when time intervals are unequal 
(Hamaker et al., 2015) ; however, this also increases the number of regression 
parameters from 8 to 8� T:
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3.2.1. Simulating and Recovering Parameters from a 
Bivariate RI-CLPM
We again performed simulations for two data generating 
scenarios: data governed by asymmetric temporal dynamics 
and data governed by symmetric dynamics. We tested 
whether (1) the DYNASTI implementation of the RI-CLPM 
adequately captures asymmetric temporal dynamics, whether 
(2) fitting a standard symmetric RI-CLPM on asymmetric 
data results in biased parameter estimates, and whether (3) 
fitting a DYNASTI RI-CLPM on symmetric data incurs any 
drawbacks in terms of model convergence and parameter 
estimation. To do so, we generated 500 datasets for N ¼ 50 
subjects across T ¼ 8 time points on two variables X and Y. 
As can be reproduced using the R code on https://osf.io/ 
wjvxg, we used a mean of zero for both variables 
(lx ¼ ly ¼ 0). In the symmetric case, we generated data 
with autoregressive effects of /xx ¼ 0:5 and /yy ¼ 0:8; and 
cross-lagged effects of byx ¼ 0:1 and bxy ¼ −0:2: In the 
asymmetric case, we changed the autoregressive effects of x 
to /above

xx ¼ 0:5 for above-mean values and to /below
xx ¼ 0:1 

for below-mean values; for y we changed autoregressive 
effects to /above

yy ¼ 0:8 and /below
yy ¼ 0:1 for above- and 

below-mean values respectively. We arbitrarily changed 
cross-lagged effects of x on y (babove

xy ¼ −0:2 and bbelow
xy ¼ 0), 

but not y on x (babove
yx ¼ bbelow

yx ¼ 0:1). In our R code, this is 
accomplished by first specifying whether to simulate follow
ing the standard symmetric or DYNASTI model (mod ¼
“standard” or mod ¼ “DYNASTI”) and then using 
so-called if-else statements (e.g., phi_xx_below <- 

ifelse(mod ¼¼ “standard”, .5, .1) for the 
below-average autoregressive effect of x). Subject-specific 
deviations in means were sampled from a bivariate normal 
distribution with means zero, variances of 1, and a small 
covariance (i.e., 0.3). Residuals were similarly generated 
from a bivariate normal distribution with means 0, variances 
of 1, and a small covariance (i.e., 0.1). In R both were 
accomplished using the rmvnorm() function from the 
SimDesign package (Genz & Bretz, 2009): eta <- 

rmvnorm(N, mean¼rep(0,2), sigma¼Sigma) for 
the N subject-specific means in which Sigma is the two-by- 
two covariance matrix of means and epsilon <- 

rmvnorm(N � T, mean¼rep(0,2), sigma¼Psi) 

for the N � T subject- and time point-specific residuals in 
which Psi is the two-by-two residual covariance matrix.

Time series data were then generated following Equations 
(11)–(14). That is, the deviations (delta) on each time 
point for each subject were determined by the autoregressive 
effect (phi), the cross-lagged effect (beta) and the residual 
(epsilon):

We generated data without missing values in the simula
tions. We ran eight MCMC chains with 5,000 iterations for 
each of the two models with the first 2,500 discarded as 
burn-in, resulting in 20,000 samples per parameter. We 
used the same procedure to assess model performance as 
described for the DSEM in Section 3.1.2. For details on the 
chosen true values, prior distributions, and model estima
tion, we refer to Online Supplementary Text 1.

3.2.2. Simulation Results
As shown in Figures 4 and 5, when data are governed by 
asymmetric temporal dynamics, the DYNASTI implementa
tion of the RI-CLPM adequately recovers these dynamics. 
The figure shows that the posterior means are centered 
around the true values, and that the autoregressive parame
ters as well as cross-lagged parameters are returned 
unbiased. This is corroborated by the 95% HDIs containing 
the true value in 92.2–97.8% of iterations (see Online 
Supplementary Table 2). Convergence was perfect with R- 
hat values below 1.1 in all iterations. Model comparison 
mostly favored the DYNASTI model over the symmetric 
model (BF10’s > 1 in 350 out of 500 iterations, 70%). This 
evidence was strong (BF10 > 10) in 256 iterations (51.2%), 
moderate (3 < BF10 < 10) in 52 iterations (10.4%) and 
anecdotal (1 < BF10 < 3) in 42 iterations (4.8%). These 
simulation results thus indicate that our DYNASTI imple
mentation of a panel model is able to capture asymmetric 
temporal dynamics, even in cohort style data with as few as 
eight waves.

When these asymmetric data are fit with a standard sym
metric RI-CLPM, parameter estimates become biased and 
interpretations of the person- or process-specific dynamics one 
is modeling are compromised. Specifically, the symmetric 
RI-CLPM yields autoregressive and cross-lagged estimates lying 
in between the truly asymmetric parameters above- and below 
the time series mean (see Figures 4 and 5). For the autoregres
sive parameters, this resulted in poor coverage (see Online 
Supplementary Table 2). Yet, for the cross-lagged parameters, 
coverage was sufficient, at least for bxy: This is, however, 
unsurprising as the chosen values of bxy were symmetric (i.e., 
both 0.1) and those of byx relatively similar (i.e., 0 and −0.2). 
Moreover, coverage was sufficient for most other parameters. 
The means, however, were slightly overestimated, resulting in 
the 95% HDIs containing the true value in only 72.6% of iter
ations (see Online Supplementary Table 2). Convergence was 
excellent with R-hat values of all population parameters below 
1.1. Together, these simulation results suggest that fitting the 
standard symmetric RI-CLPM when data is governed by asym
metric temporal dynamics results in biased autoregressive and 
cross-lagged estimates, especially when this asymmetry is large, 
resulting in incorrect conclusions about temporal dynamics 
within and between variables.

Finally, when data are governed by symmetric temporal 
dynamics, both models can recover these dynamics. That is, 
all population-level parameters reached convergence (all 
R-hat values below 1.1) and the true value lay within the 95% 
HDI in 92.2–97.0% of the iterations for the DYNASTI model 
and in 93.0–95.8% of the iterations for the symmetric model 

for(i in 2:nrow(data)) {      # Loop across observations
# Deviations for dependent variable X
delta_x[[i]] <- phi_xx * delta_x_lag + beta_yx * delta_y_lag

+ epsilon_x[[i]]
# Deviations for dependent variable Y
delta_y[[i]] <- phi_yy * delta_y_lag + beta_xy * delta_x_lag

+ epsilon_y[[i]]
}
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(see Online Supplementary Table 2). Also, the DYNASTI 
RI-CLPM returned overlapping posterior distributions for the 
autoregressive and cross-lagged parameters above and below 
the time series mean (see Figures 4 and 5). Yet, model com
parison adequately suggested that the dynamics were sym
metric: Bayes Factors consistently favored the symmetric 
model over the DYNASTI model (BF10 < 1=10 in 499 out of 
500 iterations, 99.8%). These simulation results indicate that 
one can safely fit the DYNASTI RI-CLPM to symmetric 
bivariate panel data with at least eight waves.

3.2.3. Simulation Summary
To summarize, the simulation results for both univariate and 
bivariate cases indicate that it does not hurt to fit a DYNASTI 
implementation of the time series model: when temporal 
dynamics are truly asymmetric, the model will adequately 
recover this asymmetry; when dynamics are truly symmetric, 
the results will imply symmetric dynamics, both by returning 
overlapping posterior distributions of above- and below-mean 
autoregressive and cross-lagged parameters and through model 
selection. Fitting a symmetric model to asymmetric data, on the 
other hand, produces incorrect results, with parameters differ
ing in degree (bias), kind (sign flips) or presence/absence, 
depending on the underlying nature of the true data generating 
mechanism. Importantly, this leads to incorrect conclusions 
about the dynamics of psychological processes. These simula
tion results even hold with small sample sizes (see Online 
Supplementary Figure 1), few time points (see Online 
Supplementary Figures 1 and 2), and high levels of noise (see 
Online Supplementary Figures 3 and 4). We thus find evidence 
in favor of a “keep it maximal” modeling strategy (Barr et al., 
2013) over the traditional symmetric default when asymmetric 
temporal dynamics are theoretically plausible. In the next 

section, we examine whether asymmetric dynamics are present 
in several empirical examples.

4. Empirical Examples of DYNASTI

To demonstrate how DYNASTI models work in practice, we 
next present three empirical examples. In the first, we show 
how a univariate DYNASTI DSEM gives different results on the 
dynamics of negative affect as compared to a standard symmet
ric DSEM. In the second, we show that the DYNASTI DSEM 
returns symmetric temporal dynamics in a classic example on 
smoking urges. And in the third, we show how the bivariate 
DYNASTI RI-CLPM indicates asymmetric effects of anxiety on 
subsequent sleep problems but not the opposite effect. All three 
examples are illustrated using snippets of R code. As we realize 
many researchers may be unfamiliar with R and/or Stan, we 
first guide researchers through the installation and data prepro
cessing process in R.

4.1. Getting Started with rstan

Stan (Stan Development Team, 2023) is an open-source stat
istical modeling and computing platform which can be 
accessed through all popular data analysis languages. We 
here access it through R (R Core Team, 2024). To do so, 
one first needs to install R and, optionally but recom
mended, a user-friendly interface for R called RStudio. Both 
programs can be installed on the following website: https:// 
posit.co/download/rstudio-desktop/. Once installed, one 
needs to install the rstan package to enable R to use the 
computing platform. This is accomplished by running 
install.packages(“rstan”) and subsequently 
library (rstan) in the R console (see also https:// 
github.com/stan-dev/rstan/wiki/rstan-Getting-Started).

Figure 5. Recovered values of the cross-lagged parameters by the asymmetric (top row) and symmetric RI-CLPM (bottom row) when data are governed by asym
metric (left column) and symmetric (right column) temporal dynamics. Vertical dashed lines represent true values. Panel (a) for variable X and panel (b) for vari
able Y.
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4.2. Univariate Dynamics Using DYNASTI: The Dynamics 
of Negative Affect Differ for Above- and Below-Average 
Values

As an intuitive example, we first fit the symmetric and 
DYNASTI DSEMs to an openly available dataset on a wide 
range of emotions and behaviors in people with personality 
disorders (Wright & Simms, 2016). Following Arizmendi 
et al. (2021), we here focus on a subset of the data on nega
tive affect in N ¼ 94 subjects across T ¼ 102 time points. 
Figure 6 shows the negative affect data averaged across sub
jects (black line).

4.2.1. Data Loading and Preprocessing in R
First, one needs to download the data from the OSF page 
(https://osf.io/g3xd2) and save them. Then direct R to this 
folder, setwd(“Insert-path-here”), and load the 
data into the environment, dat <- read.csv(“weather- 
padded.csv”). To get a feel for the data, one may run 
head(dat), which returns the first six rows of the dataset.

This preview shows that the dataset is in long format, that 
is, it has one row per day per participant. As we create objects 
in R to give to Stan, it does not matter which format the data 
are in, as long as the created objects are in a certain format, 
which we will get to below. The dataset contains a column 
with user ids (id), columns with negative (negaff) and 
positive (posaff) affect scores, a column with dominance 
scores (domin), one with love scores (love), one with the 
average temperature on a given day (avgtemp), and a col
umn with a day counter (day). We here only use the id, 
negaff, and day columns. Specifically, we create an object 
indicating the number of subjects, based on the id column, 
Nsubj <- length(unique(dat$id)), and an object indi
cating the number of days, based on the day column, Ndays 
<- max(dat$day).

We then create an object for the time series data 
(negAff) based on the negaff column. It can be a matrix, 
array, or data frame as long as it has the dimensions Nsubj 
rows by Ndays columns. For example, negAff <- 

matrix(dat$negaff, Nsubj, Ndays, byrow¼

TRUE). If the data contain missing values, these values need 
to be recoded to an arbitrary number for Stan to handle 
them. Our data contained 11.4% missing data points on aver
age, ranging from 1.0 to 42.2% per subject. We chose to code 
these missing values as −999, negAff[is.na(negAff)] 
<- −999. As a final data preprocessing step, we create 
objects containing the number of missing values (Nmiss), 
and the row and column numbers of these values 
(coordinates).

We then combine all these objects in a list (datNeg) to 
give to Stan. The list contains the number of subjects (N), 
the number of time points (T), the time series data (Y), the 
number of missing values (N_miss), the row and column 
numbers of these missing values (ii_miss), and the mean 
(y_mean) and standard deviation (y_sd) of the observed 
data to use for data imputation (see below).

Without going into the details of our DSEM implementation 
in Stan, it is important to understand how we handle missing 
data. We imputed missing data based on all parameters within 
the model by implementing them as parameters in the model. In 
this way, missing data points are estimated in a model-informed 
way. Our approach is thus similar to full information multiple 
imputation in that values are randomly drawn multiple times 
based on the available time series data and the dynamics therein. 
To estimate missing data points, one needs to specify a prior dis
tribution in Stan, which we did based on the mean and standard 
deviation of the observed data.

4.2.2. Fitting the Symmetric DSEM Using rstan
Now that we have created a data list in R to give to Stan 
(datNeg), we can actually fit the model. One first needs to 

Figure 6. Negative affect data (Arizmendi et al., 2021) for N ¼ 94 subjects 
across T ¼ 102 consecutive time points; the colored band represents one 
standard error of the mean. The orange and blue lines represent predicted val
ues by the standard symmetric and DYNASTI DSEM respectively.

id negaff posaff domin love avgtemp day
1 2.6 1.00 −7.12 −7.95 41 1
1 2.8 1.60 −6.41 −3.66 32 2
1 2.8 1.80 −7.71 −5.95 32 3
1 2.4 1.25 −9.24 −2.41 32 4
1 2.2 1.80 −6.83 −1.83 30 5
1 2.2 1.20 −10.95 −0.12 24 6

# Function to compute number of misses
computeMisses <- function(x) {length(which(x == −999))}
Nmiss <- computeMisses(Y)
# Object containing the coordinates of the missing values
coordinates <- numeric()
for (it in 1:nrow(Y)) {

if (length(which(Y[it,] == −999)) > 0) {
coordinates = rbind(coordinates, cbind(it,which(Y[it,] == −999)))

}
}

# Data list to give to Stan
datNeg<- list(N¼Nsubj, # Number of subjects

T¼Ndays, # Number of days
Y¼ negAff, # Time series data
N_miss¼Nmiss, # Number of misses
ii_miss¼ coordinates, # Coordinates of misses
y_mean¼mean(negAff[negAff !¼ −999]), # Mean observed data
y_sd¼ sd(negAff[negAff !¼ −999])) # Sd observed data
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download the Stan implementation of the symmetric DSEM 
from OSF (https://osf.io/8smqt) and save it in the same folder 
where the data are stored. Then, to run the model and thus 
to estimate the parameters, one needs to run the stan() 
function in R. This function takes the arguments file, a 
character string with the name of the model file, data, the 
name of the data list you created, iter, the number of itera
tions, optionally seed, a random seed to make results repro
ducible, and pars, the parameters you wish to save. Beware 
that Stan uses Bayesian estimation which means it may take 
a while. The more iterations you run, the more reliable your 
parameter estimates become, but also the longer it takes. 
Moreover, the more iterations you run, the larger the fit 
object becomes. It is thus wise to only save the posterior 
samples of the parameters you really need.

Once computing is finished, one can obtain an overview of 
the results using the print() function. For example, when 
interested in a summary of the population-level parameters 
(gammas), one may run print(fitNegSym, pars ¼
“gamma”, probs¼c(0.025, 0.975), digits¼2). 
This will give you the means, standard errors, standard devia
tions, 95% credible intervals, and several convergence statistics 
of the parameters specified in the pars argument. Plots of 
the posterior distributions of parameters can also easily be 
obtained by running stan_dens(fitNegSym, pars ¼
“gamma”). For other plotting options and many excellent 
examples, we refer to the Stan documentation (https://mc-stan. 
org/docs/).

4.2.3. Results from Fitting the Symmetric DSEM to 
Negative Affect Data
Results from fitting the symmetric DSEM to the negative 
affect data showed that negative affect carries over from one 
time point to the next (c/ ¼ 0.27, 95% HDI ¼ ½0:24, 0:31� ; 
see Online Supplementary Table 3 for full results). As illus
trated in Figure 6, this means that negative affect values 
tended to persist over time.

4.2.4. Fitting the DYNASTI DSEM Using rstan
As we were specifically interested in whether the temporal 
dynamics (i.e., autoregressive effects) differed for above- and 
below-average levels of negative affect, we also fitted a 
DYNASTI DSEM to the negative affect data. To do so one
self, first download the DYNASTI model file (https://osf.io/ 
v58qn) and save it in the same folder as the data (and sym
metric model file). Fitting the model and inspecting the fit 
results is done in the same way as for the symmetric DSEM, 
but with a different file name (and a different seed for 
reproducibility):

4.2.5. Results from Fitting the DYNASTI DSEM to Negative 
Affect Data
When fitting the DYNASTI model, there is a substantial 
separation of c/ (M ¼ 0:27; 95% HDI ¼ ½0:24, 0:31�) into 
c/above (M ¼ 0:20; 95% HDI ¼ ½0:14, 0:26�) and c/below 

(M ¼ 0:35; 95% HDI ¼ ½0:28, 0:43�), where the 95% HDIs 
for the two autoregressive parameters do not overlap. This 
means that levels of negative affect above the mean carry 
over less to the next time point than levels below the mean. 
Important for specificity, the estimates of the other parame
ters barely changed (see Online Supplementary Table 3). 
Together, these results illustrate how assuming symmetric 
temporal dynamics can lead to incorrect conclusions about 
these dynamics. If one would do so, one would miss the 
seeming healthy pattern of low levels of negative affect being 
more sticky than high levels.

4.3. Univariate Dynamics Using DYNASTI: Similar 
Dynamics for Above- and Below-Average Smoking Urges

To benchmark the DYNASTI DSEM, we also fit the sym
metric and DYNASTI models to an openly available dataset 
used as a standard example in the DSEM literature. For this 
example, we also provide an online tutorial (available at 
https://osf.io/fjtx5) guiding one through all of the steps. The 
dataset (McNeish & Hamaker, 2020) contains T ¼ 50 meas
urements of the urge to smoke and depressive symptoms 
for N ¼ 100 subjects. Raw urges data are displayed in black 
in Figure 7; the data contain no missing values. To load 
these data into the R environment, first download the 
data from https://osf.io/mwujr/ and save them in a folder. 
Then, direct R to this folder, setwd(“Insert-path- 
here”), and load the data, twolevel <- 

read.csv(“Two-Level-Data.csv”).
As these data do not contain missing data, preparing the 

data for Stan is simpler than in the negative affect example. 
We define the number of subjects (Nsubj <- length( 
unique(twolevel$id))), the number of observations 
(Nobs <- max(twolevel$t)), and the time series data 
for smoking urges (urges <- matrix( 

twolevel$Urge, Nsubj, Nobs, byrow¼T)) and 
for depressive symptoms (dep <- matrix 

(twolevel$Dep, Nsubj, Nobs, byrow¼ TRUE)). 
Then, we combine these objects in a list to transfer from R 
to Stan (datUrge <- list(N¼Nsubj, T¼Nobs, 
Y¼urges, X¼dep)).

Then, download the symmetric (https://osf.io/t82rn) and 
DYNASTI DSEM (https://osf.io/9dngj) files without imputation 
of missing data (as there are no) from OSF. The Stan code 
implemented in these files is similar to the models described in 
the previous section, although without the missing values part. 

fitNegSym <- stan(file ¼ “Standard-DSEM-withimputation.stan”,
data ¼ datNeg,
iter ¼ 4000,
seed ¼ 9845,
pars ¼ “gamma”)

fitNegAsym <- stan(file ¼ “DYNASTI-DSEM-withimputation.stan”,
data ¼ datNeg,
iter ¼ 4000,
seed ¼ 12,
pars ¼ “gamma”)

print(fitNegAsym, pars ¼ “gamma”, probs¼ c(0.025, 0.975), digits ¼ 2)
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Then fit the symmetric and DYNASTI models to the urges data 
and print a summary of the main results (see https://osf.io/fjtx5 
for the step-by-step R code used for model fitting) to test how 
the urge to smoke at time t for subject i relates to prior urge to 
smoke (t − 1) and concurrent depression (t) of that subject:

Detailed fit results of the symmetric DSEM can be seen 
in Online Supplementary Table 4. We essentially replicated 
the previous DSEM analysis with this dataset (McNeish & 
Hamaker, 2020), further validating our rstan implementa
tion. We then proceeded to fit the asymmetric model to the 
urges data, estimating separate autoregressive parameters for 
above- and below-average smoking urges.

When fitting this asymmetric model, we see relatively lit
tle separation of c/ (M ¼ 0:20; 95% HDI ¼ ½0:16, 0:23�) 
into c/below (M ¼ 0:20; 95% HDI ¼ ½0:15, 0:26�) and c/above 

(M ¼ 0:18; 95% HDI ¼ ½0:13, 0:23�; see Online Supplemen- 
tary Table 4 for full details). Importantly for specificity, 
however, we also see very little difference in the other 
parameters within the model when we adopt the DYNASTI 
model. This suggests that even when the results point to 
only one autoregressive parameter being necessary, fitting a 
DYNASTI version of the same model (with “unnecessary” 
additional parameters) does not adversely affect our ability 
to estimate other features of the model.

4.4. Bivariate Dynamics Using DYNASTI: Reciprocal 
Relationships between Sleep Problems and Anxiety in 
Adolescence

For the final empirical illustration, we investigate (a)sym
metric cross-lagged parameters using the DYNASTI RI- 
CLPM. Here we used data derived from a longitudinal study 
of adolescent sleep problems and anxiety (Mulder & 
Hamaker, 2021d; Narmandakh et al., 2020). Data were col
lected from 2,056 adolescents every 2–3 years across T ¼ 5 
waves. We here analyze data from the N ¼ 1, 189 adoles
cents that completed all waves; the data thus do not contain 
missing data. Across adolescence, sleep problems were 
scored on a three-point Likert scale, with higher values indi
cating more sleep problems; in adulthood, this changed to 
two answer options (i.e., yes/no). Scores were averaged 
across items to obtain a continuous measure of sleep prob
lems. Anxiety was scored on multiple items using a three- 
point Likert scale with higher values indicating higher anx
iety. Mean scores were used as continuous proxy of anxiety.

The original paper (Narmandakh et al., 2020) fitted a 
symmetric RI-CLPM and found evidence for only the cross- 
lagged effect of sleep problems on anxiety across two adja
cent time points, but no effects in the reverse direction. 
Here we consider both symmetric and DYNASTI (consistent 
with Equations (13) and (14)) models. Note that we estimate 
dynamics parameters equality constrained across waves, 
rather than individual cross-wave effects.

4.4.1. Data Loading and Preprocessing in R
To assess whether or not temporal dynamics within and 
between sleep problems and anxiety are asymmetric, one 
first downloads the data from https://osf.io/m5pg6 and saves 
them in a folder on your computer. The data are in wide 
format, that is, they contain five columns for each of the 
two dependent variables. It is easier to work with them in 
long format so while opening the data in R, one may also 
restructure them to long format and add subject ids:

Also define the number of subjects (Nsubj <- 
length(unique(dat$id))), the number of time 
points (Nobs <− 5), and the two dependent variables 
(sleep <- matrix(dat$x, Nsubj, Nobs, byrow¼
TRUE) and anx <- matrix(dat$y, Nsubj, Nobs, 
byrow = TRUE)). These variables then need to be com
bined in a list (datSleepAnx <- list(N¼Nsubj, 
T¼Nobs, X¼sleep, Y¼anx)) to give to Stan.

Figure 7. Raw data (McNeish & Hamaker, 2020) showing average smoking 
urges for N ¼ 100 participants across T ¼ 50 time points (black); the grey band 
represents one standard error of the mean. The orange and blue lines represent 
predicted values by the standard symmetric and DYNASTI DSEM respectively; 
note that they largely overlap, indicating similar model fit.

# Fit standard symmetric model to urges data
fitUrgeSym <- stan(file ¼ “Standard-DSEM.stan”,

data ¼ datUrge,
iter ¼ 5000,
seed ¼ 42)

# and print population-level results
print(fitUrgeSym, “gamma”, probs ¼ c(0.025, 0.975), digits ¼ 2)

# Fit DYNASTI model to urges data
fitUrgeAsym <- stan(file ¼ “DYNASTI-DSEM.stan”,

data ¼ datUrge,
iter ¼ 5000,
seed ¼ 23432)

# and print population-level results
print(fitUrgeAsym, “gamma”, probs¼ c(0.025, 0.975), digits ¼ 2)

# Set working directory to folder where you saved the downloaded data
setwd(“Insert-path-here”)

dat <- read.table(“RICLPM.dat”,
# Specify column names
col.names = c(“x1”, “x2”, “x3”, “x4”, “x5”,

“y1”, “y2”, “y3”, “y4”, “y5”))| >
# Add subject ids
dplyr::mutate(id = dplyr::row_number())| >
# Restructure to long format
tidyr::pivot_longer(cols = starts_with(c(“x”,”y”)),
names_to = c(“.value”,”wave”),
names_pattern = “(.)(.)”)
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4.4.2. Fitting the Symmetric RI-CLPM Using rstan
Now that we have created a data list to give to Stan, down
load the symmetric RI-CLPM (without missing values as 
there are none in this dataset) from OSF (https://osf.io/ 
42ckw), fit the model to the data, and print the fit results as 
in the previous empirical examples:

4.4.3. Results from Fitting the Symmetric RI-CLPM to 
Anxiety and Sleep Data
When considering the symmetric RI-CLPM, we find similar 
results to those reported previously. Both autoregressive effects 
were comparatively large and positive (/xx: M ¼ 0:28;
95% HDI ¼ ½0:24, 0:32�; /yy: M ¼ 0:27; 95% HDI ¼ ½0:23, 
0:32�; Online Supplementary Table 5). Also consistent with the 
original article, we find a modest positive effect for the cross- 
lagged effect of sleep problems (bxy) such that greater 
sleep problems (x) prospectively predict greater anxiety (y) 
at the subsequent time point (M ¼ 0:09; 95% HDI ¼
½0:04, 0:14�) but no cross-lagged effect of anxiety on sleep prob
lems byx (M ¼ 0:001; 95% HDI ¼ ½−0:02, 0:03�).

4.4.4. Fitting the DYNASTI RI-CLPM Using rstan
In order to estimate separate autoregressive and cross- 
lagged parameters above and below the mean, one needs a 
different model file from OSF, that is, the one obtained 
from https://osf.io/w6fpz. Download this file, save it in the 
folder with the saved data, and fit the DYNASTI model 
through the stan() function:

4.4.5. Results from Fitting the DYNASTI RI-CLPM to 
Anxiety and Sleep Data
When fitting the DYNASTI model, we can see different pat
terns of effects depending on the focal parameter. For the 
autoregressive effect for sleep problems, the asymmetric 
effects are directionally consistent, but when adolescents are 
below their average in sleep problems, the carry-over effect 
is much greater than for when they are above their average 
(/above

xx ¼ 0:09 compared to /below
xx ¼ 0:45). Similarly, the 

autoregressive effect of anxiety shows substantial differenti
ation. Although both autoregressive effects for above- and 
below-average levels of anxiety are positive, the effect for 
above-average levels is higher (/above

yy : M ¼ 0:35; 95% HDI 

¼ ½0:28, 0:41�) than for below-average levels (/above
yy : 

M ¼ 0:21; 95% HDI ¼ ½0:14, 0:27�).
The cross-lagged effect of sleep problems on anxiety, 

on the other hand, shows relatively little separation where 
the parameters above and below the mean remain similar 
in magnitude and sign (babove

xy : M ¼ 0:08; 95% HDI ¼
½−0:01, 0:17� ; bbelow

xy : M ¼ 0:09; 95% HDI ¼ ½0:02, 0:17�; see 
Online Supplementary Table 5 for full results). In contrast, 
the cross-lagged effect of anxiety on subsequent sleep prob
lems shows a greater differentiation. When individuals were 
above average in their anxiety symptoms, greater anxiety 
predicted reductions in subsequent sleep problems (babove

yx : 
M ¼ −0:10; 95% HDI ¼ ½−0:14, − 0:06�). In contrast, when 
they were below average in their anxiety, this relationship 
was positive (bbelow

yx : M ¼ 0:10; 95% HDI ¼ ½0:06, 0:14�). 
This heterogeneous effect—with similar magnitudes but 
opposite signs—cancels out in the symmetric model, result
ing in the near-zero estimate.

5. Discussion

We here proposed DYNASTI implementations of longitu
dinal or time series models in which temporal dynamics are 
allowed to vary above and below the time series mean. In 
simulations, we showed that asymmetric temporal dynamics 
are adequately recovered by DYNASTI implementations and 
that fitting a DYNASTI model to symmetric data does not 
incur drawbacks in terms of model convergence or param
eter estimation. The opposite scenario, modeling symmetric 
temporal dynamics when data are truly governed by asym
metric dynamics, leads to incorrect parameter estimates, 
resulting in conclusions that can be, and in empirical exam
ples are, incorrect in magnitude (bias), kind (positive/nega
tive) and presence (zero/non-zero).

Therefore, in line with the “keep it maximal” proposition 
in linear mixed modeling (Barr et al., 2013), we believe the 
DYNASTI approach should be preferred over the standard 
symmetric default in time series modeling. We do so due to 
the combination of considerable a priori plausibility of 
asymmetric dynamics in many research fields in combin
ation with negligible estimation costs. As we showed in two 
of the empirical applications, DYNASTI implementations 
produce substantially different results regarding temporal 
dynamics, a well-recoverable pattern in our simulations. 
Specifically, we observed that low levels of negative affect 
are more sticky (positive autoregression) than high levels 
(lower positive autoregression). Besides, we observed that 
when individuals experienced above-average anxiety symp
toms on a given time point, greater anxiety predicted 
reduced subsequent sleep problems (negative cross-lagged 
effect). Yet, when they experienced below-average symp
toms, greater anxiety predicted increased subsequent sleep 
problems (positive cross-lagged effect). These applications 
demonstrate that the DYNASTI approach may yield novel 
empirical findings with different translational implications. 
However, we should note that even when the DYNASTI 
model can be estimated with only modest additional com
putational costs and demands on the data, this does not 

fitSleepAnxSym <- stan(file ¼ “Standard-RICLPM.stan”,
data ¼ datSleepAnx,
iter ¼ 5000,
seed ¼ 38284)

print(fitSleepAnxSym, pars¼ c(“mu”,”phi”,”beta”), probs¼ c(0.025, 
0.975), digits ¼ 3)

fitSleepAnxAsym <- stan(file ¼ “DYNASTI-RICLPM.stan”,
data ¼ datSleepAnx,
iter ¼ 5000,
seed ¼ 57812)

print(fitSleepAnxAsym, pars¼ c(“mu”,”phi”,”beta”), probs¼ c(0.025, 0.975), 
digits ¼ 2)
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negate the general principle that more parsimonious models 
should be preferred unless the inferential or generalization 
benefits of a more complex model are justified (Pitt & 
Myung, 2002). Moreover, even if fitting a DYNASTI model 
shows good explanatory power, and superior fit to the non- 
DYNASTI equivalent, this does not ensure that this is the 
true generating process or mechanism. The problem of 
model equivalence (that for any observed data pattern there 
exist many models with equivalent explanatory power), 
should always be kept in mind (Raykov & Marcoulides, 
2001).

We emphasize that the DYNASTI approach is general 
and thus not limited to the time series and panel models we 
used as examples. The DYNASTI logic can readily be 
applied to other models, including (but not limited to) 
STARTS models (Kenny & Zautra, 2001), ALT models 
(Bollen & Curran, 2004), latent change score models (e.g., 
Usami et al., 2015), ARMA models (e.g., Hamaker et al., 
2002), and LCM-SR models (Curran et al., 2014). To enable 
researchers to create DYNASTI versions of their preferred 
time series models, we implemented the models in a fully 
open source code base. We purposely used Stan (Gelman 
et al., 2015) to obviate the need for expensive proprietary 
software and to allow greater flexibility and modifiability.

For simplicity, we focused on population-level effects in 
the manuscript. However, the current DYNASTI implemen
tations of the DSEM (Equations (7)–(10)) and RI-CLPM 
(Equations (11)–(14)) contain subject-specific effects. Such 
subject-specific effects could prove useful, for example, 
when identifying risk factors or when personalizing treat
ment. For instance, an influential body of findings has dem
onstrated that higher emotional inertia is a risk factor for 
depression (e.g., Kuppens et al., 2010). Using a DYNASTI 
approach would allow researchers to tease apart such emo
tional inertia for days that are “better” than average versus 
days that are “worse” than average (De Haan-Rietdijk et al., 
2016a) and to specifically target emotional inertia for more 
negative mood. Moreover, the DYNASTI approach may 
provide tools to treat, for example, individuals suffering 
from bipolar disorder (Bonsall et al., 2012; Hofmann & 
Meyer, 2006; Holmes et al., 2016) as it will show whether 
individuals are more prone to getting stuck in positive or 
negative mood. Another benefit coming with these subject- 
specific effects is that one could incorporate covariates 
which predict individual differences in the autoregressive 
asymmetry. For instance, they allow one to assess which 
personal or environmental factors cause one person to suffer 
more from a short night of sleep than another. However, 
our current DYNASTI DSEM implementation is unable to 
recover subject-specific effects adequately. This means that 
even if individual differences in asymmetric temporal 
dynamics exist, we would not be able to identify them. 
Preliminary simulations suggest that over 300 time points 
are needed to recover subject-specific effects. Therefore, 
future studies are advised to examine exactly how many 
time points are needed to draw individualized conclusions.

Further extensions are also evident. For conceptual rea
sons, we focused on asymmetry above and below the time 

series mean. To do so, we set the threshold to zero. This 
threshold could also be set to a clinically-relevant value 
(e.g., a threshold above which an individual is considered 
clinically depressed) or estimated. For example, it could be 
that the negative effect of sleep on mood only occurs when 
sleep deviations are of a certain severity, say two hours less 
than average. This could easily be implemented in the open 
source code by specifying the autoregressive parameters 
based on an estimated threshold (instead of the mean). 
Moreover, both univariate and multivariate DYNASTI 
implementations can be extended with latent variables 
explaining multiple observed variables at each time point 
(see e.g., Molenaar, 1985). By doing so, temporal dynamics 
within and between latent, instead of observed, variables can 
be investigated.

We must note that DYNASTI implementations are not 
the only (non)linear extensions of AR models proposed in 
the literature. We here focused on a psychologically plaus
ible extension in which dynamics depend on the time series 
value. Yet, depending on the research question, it may be 
more suitable to fit models that allow dynamics parameters 
to vary across time points. Examples of such models are 
change point models (Cabrieto et al., 2017; Ma et al., 2020) 
with which changes in temporal dynamics can be detected, 
time-varying effects models (TVEM; Hastie & Tibshirani, 
1993; Hoover et al., 1998; Tan et al., 2012) or time-varying 
autoregressive models (TVAR; Bringmann et al., 2017, 2018; 
Haslbeck et al., 2021; Haslbeck & Ryan, 2022) that allow 
temporal dynamics parameters to differ across time points, 
and nonstationary state-space models (Molenaar et al., 
2009) that allow for time-varying dynamics parameters in 
combination with latent variables. These models are thus 
more flexible in allowing differing dynamics over time and 
could be combined with DYNASTI implementations in 
future studies. In this way, one may not only answer how 
dynamics differ above and below the mean, but also how 
these asymmetric dynamics develop over time.

To conclude, we propose DYNASTI implementations of 
time series models as we suspect asymmetric temporal 
dynamics to be more of a rule than an exception in psycho
logical processes. By providing openly available R and Stan 
code, we hope to aid applied researchers and invite them to 
use DYNASTI versions of their preferred time series models 
to uncover asymmetric temporal dynamics.
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