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Modeling Cycles, Trends and Time-Varying Effects in Dynamic Structural 
Equation Models with Regression Splines

Ø. Sørensena and E. M. McCormickb 

aDepartment of Psychology, Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway; 
bEducational Statistics and Data Science, College of Education, University of Delaware, Newark, DE, USA 

ABSTRACT 
Intensive longitudinal data with a large number of timepoints per individual are becoming 
increasingly common. Such data allow going beyond the classical growth model situation and 
studying population effects and individual variability not only in trends over time but also in 
autoregressive effects, cross-lagged effects, and the noise term. Dynamic structural equation 
models (DSEMs) have become very popular for analyzing intensive longitudinal data. However, 
when the data contain trends, cycles, or time-varying predictors which have nonlinear effects 
on the outcome, DSEMs require the practitioner to specify the correct parametric form of the 
effects, which may be challenging in practice. In this paper, we show how to alleviate this issue 
by introducing regression splines which are able to flexibly learn the underlying function 
shapes. Our main contribution is thus a building block to the DSEM modeler’s toolkit, and we 
discuss smoothing priors and hierarchical smooth terms using the special cases of two-level 
lag-1 autoregressive and vector autoregressive models as examples. We illustrate in simulation 
studies how ignoring nonlinear trends may lead to biased parameter estimates, and then 
show how to use the proposed framework to model weekly cycles and long-term trends in 
diary data on alcohol consumption and perceived stress.

KEYWORDS 
DSEM; intensive 
longitudinal data; 
regression splines; 
smoothing; Stan   

Introduction

Dynamic structural equation models (DSEMs) 
(Asparouhov et al., 2018) offer a general framework for 
Bayesian multilevel modeling of timeseries data. 
Applications include analysis of positive and negative 
affect (Hamaker et al., 2018), interindividual differences in 
cognitive variability (Judd et al., 2024), affective dynamics 
and alcohol-related outcomes (Feinn et al., 2023), and the 
impact of weather conditions on the use of cycling for 
transportation (Bjørnarå et al., 2023). Recent develop-
ments of DSEM include incorporation of measurement 
models (McNeish et al., 2021; Oh & Jahng, 2023), model-
ing of cycles using sine-cosine curves (Muth�en et al., 
2024), and open-source implementations (Li et al., 2022).

The focus of this paper is on dealing with the effect 
of time-varying covariates, trends, or cycles on the out-
comes of interest. In classical time series analysis, in 
which a single unit of observation is followed over time, 
it is common to detrend the data prior to analysis. This 

is not as straightforward in the multilevel case, since it 
has to be decided whether to detrend at the individual 
level or at the population level. In addition, trends 
caused by an experimental intervention are often of 
substantial interest and should arguably not be removed 
prior to analysis (Wang & Maxwell, 2015). When the 
trend can be captured by a linear model, possibly 
including some transformation of the time-dependent 
covariate, it can be accounted for by adding a linear 
regression term to the within-level equation of the 
DSEM (Hamaker et al., 2018, Sec. 6.3.2). With more 
general nonlinear trends—particularly in the multivari-
ate case—how to take these systematic changes into 
account is more of an open question. While nonlinear 
parametric models are one possibility, they require the 
practitioner to specify their complete parametric form, 
which may be challenging. In the rest of this paper, the 
terms ”linear” and ”linearity” refer specifically to a 
straight line, whereas ”linear in the parameters” 
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explicitly describes a linear regression model that may 
include nonlinear transformations of the explanatory 
variables.

Asparouhov et al. (2018, p. 381) suggested model-
ing trends using splines, without pursuing it further. 
In this paper, we follow up on this suggestion and 
show how nonparametric regression splines can be 
used to account for trends or effects of time-varying 
covariates on the outcome of interest both in the uni-
variate and in the multivariate setting. One advantage 
of this approach is that we only need to assume that 
the function to be estimated is smooth. Lack of 
smoothness—denoted wiggliness in the smoothing lit-
erature—is quantified by the second derivative of the 
function in a sense to be precisely described by 
Equation (11). By this definition, a straight line is per-
fectly smooth. This means that a priori the function is 
assumed more likely to be close to linear than highly 
nonlinear. The Bayesian estimation procedure then 
learns the functional shape concurrently with estimat-
ing all other model parameters. Cyclic patterns can 
also be accommodated using cyclic splines (Wood, 
2017a), which allow a much larger range of function 
shapes than more-restrictive sine and cosine 
functions.

We note that detrending of time series using 
splines has been proposed in a range of fields, includ-
ing astronomy (Hippke et al., 2019), econometrics 
(Kauermann et al., 2011), dendrochronology (Klesse, 
2021), functional magnetic resonance imaging 
(Tanabe et al., 2002), and global warming (Wu et al., 
2007). However, all of these applications consider the 
case in which a single unit of observation—possibly 
multivariate—is followed over time. Since DSEMs are 
multilevel models aimed at analyzing data following 
multiple individuals over time, several new methodo-
logical issues arise. Firstly, for each observed outcome 
we need to distinguish between a common trend and 
individual-specific deviations from this trend, both of 
which may be nonlinear. Secondly, in the multivariate 
case, there may be substantial reasons to assume that 
the shape and/or degree of nonlinearity is similar 
across multiple domains. Both of these issues call for 
the use of hierarchical modeling to increase statistical 
power, and we hence extend previous frequentist 
approaches for hierarchical nonlinear smooths 
(Brumback & Rice, 1998; Pedersen et al., 2019) to the 
Bayesian setting.

To summarize, our goal is to provide an additional 
tool in the DSEM modeler’s toolkit. To keep the pres-
entation simple, we consider lag-1 autoregressive (AR 
(1)) and lag-1 vector autoregressive (VAR (1)) models 

with manifest variables in the main paper and show 
the extension to the fully general cross-classified 
DSEM framework in Appendix A. We have imple-
mented the proposed models in the open source prob-
abilistic programming language Stan (Carpenter 
et al., 2017). A particular advantage of Stan in the 
present context is that its Hamiltonian Monte Carlo 
algorithm (Hoffman & Gelman, 2014) scales very well 
with the number of parameters (Betancourt, 2018), 
which quickly runs into the tens of thousands for the 
models considered here. Also, in contrast to methods 
using Gibbs sampling, Stan gives the user large flexi-
bility in extending the models to new use cases by 
changing the priors and data generating distributions.

The paper proceeds as follows. In “Two-level AR(1) 
models”, we present a two-level AR(1) model with 
regression splines. In “Two-level VAR(1) models”, we 
proceed to the multivariate case, and consider two- 
level VAR(1) models with vector-valued regression 
splines, and also discuss hierarchical smooth terms. In 
“Simulation experiment”, we conduct simulation 
experiments comparing the proposed methodology to 
alternative approaches. In “Analysis of daily diary data 
on alcohol consumption”, we present an example 
application in which we analyze diary data with 
recordings of alcohol consumption and stress levels. 
Finally, in “Discussion”, we discuss the results and 
propose some future extensions. In Appendix A, we 
show how smooth terms can be incorporated in the 
within-level models of the fully general DSEM frame-
work and derive the AR(1) and VAR(1) models as 
special cases.

Two-level AR(1) models

We now consider a two-level AR(1) model, in which 
the first level refers to the internal dynamics of single 
individuals and the second level refers to the popula-
tion level parameters. In what follows, subscripts i 
and t are assumed repeated for i ¼ 1, :::, N individuals 
and t ¼ 1, :::, T timepoints, respectively.

In residual formulation, the level-1 model is

yit ¼ ai þ bixit þ /i yi, t−1 − ai − bixi, t−1ð Þ þ dit , (1) 

where ai is the mean of participant i, bi is the effect 
of a time-varying covariate xit; /i is the autoregressive 
coefficient of participant i, and dit is a normally dis-
tributed residual term, dit � Nð0, w2

i Þ; where wi is the 
residual standard deviation of participant i. The term 
bixit may be a trend, e.g., with xit ¼ t; or it can 
describe the effect of some time-varying covariate – 
for instance, in McNeish and Hamaker (2020, eq. 
(4a)), xit is a measure of depressive symptoms and yit 
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is urge to smoke, thus bi is the effect of depression on 
urge to smoke for subject i. It is straightforward to 
include both a trend term and multiple time-varying 
covariates by using vectors of regression coefficients 
and covariates, b0ixit:

One limitation of model (1) is that the trend term is 
restricted to be linear in the parameters. Although this 
admits nonlinear transformations of xit and can easily 
be extended to nonlinear parametric models, it requires 
the researcher to specify the parametric form a priori. 
An alternative is to instead assume that the effect of xit 
on the response for subject i takes some generic func-
tional form fiðxitÞ; and formulate the model as

yit ¼ ai þ fi xitð Þ þ /i yi, t−1 − ai − fiðxi, t−1Þ
� �

þ dit:

(2) 
Before presenting the details we also state the level- 

2 model,

ai ¼ ca þ uai (3) 

/i ¼ c/ þ u/i (4) 

log w2
i ¼ cw þ uwi (5) 

fi xitð Þ ¼ s xitð Þ þ si xitð Þ: (6) 

In Equations (3)–(5), we assume that the 
individual-level mean, autoregressive effect, and log 
residual variance have a common form with a popula-
tion component c ¼ ðca , c/, cwÞ

0 and an individual 
component ui ¼ ðuai, u/i, uwiÞ

0
: Note here that since in 

Bayesian statistics all parameters have associated prob-
ability distributions, we refrain from using the terms 
”fixed” and ”random” effects, and instead talk about 
common/population parameters and individual 
parameters. The prior distribution of c will vary 
between applications, but is typically weakly inform-
ative and based on domain knowledge. The individual 
deviations are assumed normally distributed, ui �

Nð0, TÞ; where the covariance matrix is

T ¼
r2

a ra/ raw

ra/ r2
/ r/w

raw r/w r2
w

2

6
4

3

7
5: (7) 

For easier specification of prior distributions we 
decompose T into a scaling matrix diagðsÞ and a cor-
relation matrix X;

T ¼ diagðsÞXdiagðsÞ

¼

sa

s/

sw

2

4

3

5
1 qa/ qaw

qa/ 1 q/w

qaw q/w 1

2

6
4

3

7
5

sa

s/

sw

2

4

3

5:

(8) 

For each component of s we use a half Cauchy 
prior on the positive real line,

p sjjnj
� �

¼
1sj2Rþ

2pc 1þ sj=nj
� �2

h i , j 2 fa, /, wg, (9) 

where nj is a scale parameter. For X we use an LKJ 
prior with shape f � 1 (Lewandowski et al., 2009).

Common smooth terms

Equation (6) contains the function fiðxÞ from (2) 
decomposed into a common part sðxÞ and an 
individual-specific part siðxÞ; where we now have 
dropped the subscripts on xit and let x represent some 
generic argument to the functions fiðxÞ; sðxÞ; and 
siðxÞ: We define each of the two component functions 
using regression splines, whereby the functional form 
is constructed as a weighted sum over a set of basis 
functions. For the common term we have

sðxÞ ¼
XK

k¼1
bkbkðxÞ (10) 

where bk are weights and bkðxÞ are basis functions. 
Cubic regression splines (Wood, 2017a, Ch. 5.3.1), 
thin-plate regression splines (Wood, 2003) and 
Bayesian P-splines (Brezger & Lang, 2006; Eilers & 
Marx, 1996; Wood, 2017b) are directly applicable in 
the proposed framework.

We use the intermediate rank approach to smooth-
ing (Wood, 2011), in which the number of basis func-
tions K is chosen large enough to support a wide 
range of functional shapes yet much smaller than the 
number of observations. Without further penalization, 
simply plugging the term (10) into (2) will overfit 
considerably unless K is very small. We define the 
degree of wiggliness of sðxÞ as the integral of its 
squared second derivative over the domain X of x,

ð

X

s00ðxÞ�2dx:
h

(11) 

For a perfectly smooth function with no wiggliness 
the integral equals zero. Our assumption that sðxÞ is 
smooth can hence be formalized by assuming that 
(11) is a priori more likely to be close to zero 
than not.

We refer to Wood (2017a, Ch. 4.2.4, Ch. 5.8) for 
details, but note that the integral in (11) can be writ-
ten in terms of the coefficients b ¼ ðb1, :::, bKÞ

0 in (10) 
as 
Ð

X
½s00ðxÞ�2dx ¼ b0Sb; where S is a symmetric K � K 

penalty matrix. The set of basis functions 
fb1ðxÞ, :::, bKðxÞg used in (10) spans a space 
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containing both constant, linear, and nonlinear func-
tions. That is, although sðxÞ in general is nonlinear it 
is possible to set b such that sðxÞ ¼ ax þ b for some 
constants a and b. However, these values of b yield Ð

X
½s00ðxÞ�2dx ¼ 0 since s00ðxÞ ¼ 0 when sðxÞ is linear. 

Positive definiteness of a symmetric matrix S is 
defined by b0Sb > 0 for all b: As we have seen, in this 
case there are two dimensions (constant and linear 
functions) along which b0Sb ¼ 0; and it follows that S 
is only positive semidefinite, with rank K − 2:

Next, for the intercepts ai in (2) to be identifiable, 
sðxÞ should not have its own intercept. This is imposed 
by removing all constant functions from the spline basis 
using sum-to-zero constraints (Wood, 2017a, Ch. 4.3.1, 
Ch. 5.4.1). The result is a transformed basis with K − 1 
functions f�b1ðxÞ, :::, �bK−1ðxÞg; and the representation 

sðxÞ ¼
XK−1

k¼1

�bk
�bkðxÞ: (12) 

With this basis, for a given sample of size NT, we 
have 

PN
i¼1
PT

t¼1 sðxitÞ ¼ 0 for any choice of weights 
�bk: Importantly, any function shape which can be rep-
resented by (10) can also be represented by (12), and 
they will only differ by a constant term. In this new 
basis, the integral (11) is given by 

Ð

X
½s00ðxÞ�2dx ¼

�b
0�S�b; where �b ¼ ð�b1, :::, �bK−1Þ

0 and �S is a ðK − 1Þ �
ðK − 1Þ penalty matrix. It is now impossible to choose 
�b such that sðxÞ is constant, but a linear function can 
still be constructed. More technically, �b

0�S�b ¼ 0 for 
any �b such that sðxÞ ¼ kx for some constant k 6¼ 0;
and all linear functions are said to be in the nullspace 
of �S: On the other hand, for any �b such that sðxÞ is 
nonlinear, �b

0�S�b > 0; and all nonlinear functions are 
said to be in the range space of �S: It follows that the 
ðK − 1Þ � ðK − 1Þ symmetric matrix �S is positive 
semidefinite and has rank ðK − 1Þ − 1 ¼ K − 2:

In a Bayesian setting, the smoothness assumption 
can be naturally encoded by assuming that the weights 
�b have a multivariate normal prior centered at zero, 
with covariance matrix proportional to the inverse of 
the penalty matrix �S: Since �S is rank deficient (as is 
the original S), the standard matrix inverse cannot be 
computed. However, the Moore-Penrose pseudoin-
verse (Moore, 1920; Penrose, 1955), which we denote 
by �S− can be used instead. For definitions and proper-
ties of the pseudoinverse we refer to Gentle (2024, Ch. 
3.7.2). For our purposes, the key is that it lets us write 
the smoothing prior as a normal distribution

�b � N 0, s2
b
�S−

� �
, (13) 

where the scale parameter sb quantifies the amount of 
deviation from linearity. The prior in (13) is a 

degenerate multivariate normal distribution for which 
values of �b corresponding to a linear sðxÞ are not 
penalized. In particular, if no deviation from linearity 
is allowed by setting sb ¼ 0; it effectively turns into 
an improper uniform prior on the slope k of a linear 
function of the form sðxÞ ¼ kx:

For practical model fitting, the spline basis and 
coefficients are transformed in yet another step into a 
representation in matrix-vector form

~x1~b1 þ ~X2~b2 (14) 

where ~x1 is a vector of length NT containing the lin-
ear term and ~X2 is a matrix of size NT � ðK − 2Þ con-
taining the part of the spline basis in the range space 
of the penalty matrix. In this transformed representa-
tion, the smoothing prior amounts to assuming that 
the penalized coefficients ~b2 are independent and 
identically distributed ~b2 � Nð0, s2

bIK−2Þ; where IK−2 
is an identity matrix of size ðK − 2Þ � ðK − 2Þ: As for 
the other variance components, we use the half 
Cauchy prior (9) for sb with scale parameter nb: The 
precision, s−2

b now is a regularization parameter; a 
high value of s−2

b means that all components of ~b2 are 
close to zero and thus sðxÞ close to linear, and the 
opposite for large values of s−2

b : For the linear part we 
recommend a weakly informative prior based on prior 
knowledge.

For our purposes, the R (R Core Team, 2024) pack-
age mgcv (Wood, 2017a) contains functions which 
set up the basis fb1ðxÞ, :::, bKðxÞg and the penalty 
matrix S and transform them to the form (14). This is 
also how the brms package (B€urkner, 2017) sets up 
smooth functions for models which are subsequently 
estimated in Stan (Carpenter et al., 2017). However, 
brms does not directly support estimating the 
DSEMs discussed in this paper.

Individual smooth terms

The individual smooth terms siðxÞ reflect how each 
participant deviates from sðxÞ and are composed in 
the same way as (10),

siðxÞ ¼
XL

l¼1
blidlðxÞ, (15) 

where there are now L basis functions 
fd1ðxÞ, :::, dLðxÞg with weights bli: The construction 
described in the previous paragraph also applies to 
siðxÞ; and we use the smoothing prior bi �

Nð0, s2
b, indS−

indÞ; where we assume that the trajectories 
for all individuals are sampled from a distribution in 
which the typical deviation from linearity is quantified 
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by the standard deviation sb, ind: Importantly, this con-
struction allows individual curves to differ in their 
degree of nonlinearity. For sb, ind we again use a half 
Cauchy prior, with scale parameter nb, ind:

A more restrictive model in which the individual- 
specific trajectories only deviate linearly from the 
common curve can be obtained by setting siðxÞ ¼ bix:
In this case the transformed model (14) does not con-
tain a penalized part ~X2~b2 and hence no smoothing 
parameter sb, ind is needed.

Two-level VAR(1) models

In a VAR(1) model, P outcome variables are meas-
ured at each timepoint. Level-1 model (2) thus gener-
alizes to

yit ¼ ai þ f i xitð Þ þUi yi, t−1 − ai − f i xi, t−1ð Þ
� �

þ di,

(16) 

where boldface lowercase letters now denote vectors 
of size P, yit contains observed outcomes for subject i 
at timepoint t, ai contains intercepts for subject i, 
f iðxitÞ is a vector-valued function of a vector of time- 
varying covariates xit; and di is a vector of residual 
terms. Each component of di is assumed normally dis-
tributed, so dip � Nð0, w2

ipÞ and we define wi ¼

ðwi1, :::, wiPÞ
0
: The autoregressive and cross-lagged 

effects between the outcomes are represented by the 
P � P matrix Ui; which we write as

Ui ¼

/i, 11 /i, 12 ::: /i, 1P
/i, 21 /i, 22 :::

..

. . .
.

/i, P1 ::: /i, PP

2

6
6
6
6
4

3

7
7
7
7
5
:

The level-2 model (3)–(6) generalizes to

ai ¼ ca þ uai (17) 

vec Uið Þ ¼ c/ þ u/i (18) 

log w2
i ¼ cw þ uwi (19) 

f i xitð Þ ¼ s xitð Þ þ si xitð Þ, (20) 

where vecðUiÞ denotes the vector operator which 
turns the P � P matrix U into a column vector of size 
P2: Again we collect all the individual deviations into 
a vector ui ¼ ðu0ai, u0/i , u0wiÞ

0
; which is now of size 2P þ

P2: The deviations are assumed normally distributed 
around zero with covariance matrix T; with the latter 
decomposed as in (8). The half Cachy prior (9) for 
the scale parameters and the LKJ prior for the correl-
ation matrix still apply.

Equation (20) shows the vector valued smooth 
function decomposed into a common component 
sðxitÞ and an individual-level component siðxitÞ: We 
assume each vector component takes the form

f i xitð Þ ¼

f1i x1, itð Þ

..

.

fPi xP, itð Þ

2

6
6
4

3

7
7
5 ¼

s1 x1, itð Þ

..

.

sP xP, itð Þ

2

6
6
4

3

7
7
5þ

s1i x1, itð Þ

..

.

sPi xP, itð Þ

2

6
6
4

3

7
7
5

(21) 

where xp, it is a scalar time-varying covariate used in 
the pth smooth function. Both the common and indi-
vidual terms can be constructed as described in the 
previous section.

Multivariate hierarchical smooth terms

In some applications, it may be reasonable to assume 
a priori that the common terms are similar in terms 
of wiggliness or overall shape. If the assumption is 
correct, it will yield increased power compared to the 
case of estimating the terms independently. We refer 
to Pedersen et al. (2019) for a thorough introduction 
to such hierarchical generalized additive models in the 
maximum likelihood setting. Here we discuss the 
model assumptions which seem most useful in cogni-
tive science, and describe the prior distributions 
necessary to perform Bayesian estimation.

When the components of y have similar trends, 
e.g., if y contains measurements of closely related 
skills like different mathematical tasks (Judd et al., 
2024), we can rewrite (21) to contain both a smooth 
term sðxÞ which is common for all outcomes and a 
smooth term spðxÞ which is unique to each outcome, 
yielding

fpiðxÞ ¼ sðxÞ þ spðxÞ þ spiðxÞ, p ¼ 1, :::, P: (22) 

We can further assume that the component specific 
deviations spðxÞ have similar (but not identical) 
degrees of nonlinearity, by which we mean that all 
spðxÞ for p ¼ 1, :::, P are sampled from a common dis-
tribution in which the typical amount of deviation 
from nonlinearity is quantified by a scale parameter. 
Making the same assumption for the individual devia-
tions spiðxÞ; we have one scale parameter sb for sðxÞ;
one scale parameter sb, 2 for spðxÞ (p ¼ 1, :::, PÞ and 
finally sb, ind for spiðxÞ (p ¼ 1, :::, PÞ:

An example of such hierarchical smooth terms is 
shown in Figure 1, simulated for P ¼ 3 outcome vari-
ables and N ¼ 5 subjects. Note that both the overall 
trend and the overall smoothness is similar across the 
outcome variables.
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If no common trend can be assumed, as would be 
the case when the outcome variables are of different 
character, Equation (22) reduces to (21). In this case 
each spðxÞ represents the overall trend for the out-
come variable in question. If in addition no assump-
tion about similar degree of nonlinearity can be made, 
we get P scale parameters sb, p for p ¼ 1, :::, P:

Simulation experiment

We here report results from a simulation experiment 
aimed at understanding the consequences of ignoring 
nonlinear effects in the level-1 model, and also the 
cost in statistical power of using the more flexible 
regression splines when the truth is linear.

Data generation

We simulated 200 random datasets from an AR(1) 
model as specified by Equations (2) and (3)–(6), with 
N ¼ 50 participants measured at T ¼ 200 identically 
spaced timepoints and with fiðxitÞ representing a time 
trend. We let xt ¼ Dt represent chronological time at 
timepoint t, with D ¼ 1=200; so xt 2 ½0:005, 1�: The 
common trend had the functional form

sðxÞ ¼ 0:2 � ð1 − xÞ11
� 10 � xð Þ

6
þ 10 � 10 � ð1 − xÞ

� �3
� x10 

with its mean subtracted so it summed to zero over 
the range of xt: The function can be seen in the upper 
right panel of Figure 1 and is a reverted version of a 
function introduced by Gu and Wahba (1991).

Figure 1. Example of hierarchical smooth terms with similar trends and similar degree of nonlinearity. The upper left plot shows 
the overall trend for three domains and five individuals. The upper right plot shows the common trend component, the lower left 
plot shows the domain-specific components, and the lower right plot shows the individual-specific components.
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For the individual deviations siðxÞ we first set up a 
basis consisting of 10 thin-plate regression splines 
(Wood, 2003), and then transformed it to the form 
(14). The linear part was sampled from a standard nor-
mal distribution and the penalized part from a normal 
distribution with variance s2

b, ind ¼ 4: We set ca ¼ 0 
and ra ¼ 1; indicating that the individual means are 
normally distributed around zero with a standard devi-
ation of one. For the autoregressive parameter, we set 
the mean to c/ ¼ 0:6 and the standard deviation to 
r/ ¼ 0:05: The mean of the logarithm of the residual 
variance was set to cw ¼ −3 with a standard deviation 
rw ¼ 0:3; implying that the mean of the residual 

standard deviation wi was 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp fcw þ r2

w=2g
q

� 0:308;

using the properties of the log-normal distribution. We 
assumed no correlation between the individual devia-
tions ai; /i; and log w2

i ; so all off-diagonal elements of 
the covariance matrix T in (7) were zero.

We also generated 200 additional datasets in which 
both the common and individual trends were linear, 
by setting ~b2 ¼ 0 in the transformed representa-
tion (14).

Bayesian estimation

For each simulated dataset we estimated the AR(1) 
model (2)–(6) with the smooth term fiðxtÞ consisting 
of a common component sðxtÞ and individual compo-
nents siðxtÞ: Four different choices of basis functions 
were compared. The most restrictive model had only 
linear terms identically to (1), and hence no smooth-
ing parameters. The second was a close-to-linear 
spline model with K ¼ 4 and L ¼ 4 thin-plate regres-
sion splines for the common and individual compo-
nent, respectively. The next two were more flexible 
spline models, with K ¼ 20 and L ¼ 10; and K ¼ 40 
and L ¼ 20; thin-plate regression splines for the com-
mon and individual terms, respectively. The goal with 
estimating these models was to understand the conse-
quences of assuming linearity or close-to-linearity 
when the truth is nonlinear, as well as the conse-
quence of using a basis that is more flexible than 
necessary.

For both smoothing parameters we used the half 
Cauchy prior (9) with scale n ¼ 1: For the linear coef-
ficients we used a weakly informative normal distribu-
tion prior with mean zero and standard deviation 3 
and for the level-2 means c ¼ ðca, c/, cwÞ

0 we used a 
normal distribution with zero correlation and stand-
ard deviation 3. For the correlation matrix X we used 
an LKJ prior (Lewandowski et al., 2009) with shape 

f ¼ 2; thus the correlation of the level-2 parameters 
in c was estimated although it was set to zero in the 
data generation process. Finally, for the scale parame-
ters, diagðsÞ in (8), we used a half Cauchy prior with 
scale n ¼ 2:5:

For all models and simulated datasets we ran four 
independent chains with 6000 iterations of the NUTS 
sampler (Hoffman & Gelman, 2014) discarding the 
first 3000 as burn-in, yielding 12,000 samples from 
the posterior distribution. The default options of ver-
sion 2.32.6 of the rstan package were used 
(Carpenter et al., 2017), except that the maximum 
treedepth was set to 20.

Results

Table 1 shows simulation results for the population 
mean parameters and their standard deviations, which 
are typically the quantities of main interest in a 
DSEM analysis. When the true trend was linear, there 
was essentially no difference between the four models, 
and they all had low bias. That is, allowing a nonlin-
ear trend by using the flexible spline models had min-
imal cost in terms of accuracy and power.

When the true trend was nonlinear, on the other 
hand, both the linear and the constrained spline 
model suffered from high bias in all parameters, 
whereas the two flexible spline models recovered all 
parameters quite well. In particular, both the linear 
model and the constrained model on average esti-
mated the autoregressive effect c/ to be one, and at 
the same time erroneously estimated the standard 
deviation r/ to be zero, indicating no individual vari-
ability. In contrast, the two flexible spline models on 
average had a slight upward bias in this parameter, 

Table 1. Simulation results with AR(1) models.
Linear Splines (4/4) Splines (20/10) Splines (40/20)

Linear data
ca ¼ 0 −0.01 (0.14) −0.02 (0.14) −0.01 (0.13) −0.02 (0.13)
c/ ¼ 0:6 0.60 (0.01) 0.60 (0.01) 0.60 (0.01) 0.60 (0.01)
cw ¼ −3 −3.00 (0.05) −2.99 (0.05) −3.00 (0.05) −3.00 (0.05)
ra ¼ 1 1.05 (0.10) 1.03 (0.10) 1.03 (0.11) 1.03 (0.10)
r/ ¼ 0:05 0.05 (0.02) 0.05 (0.02) 0.05 (0.02) 0.05 (0.02)
rw ¼ 0:3 0.31 (0.04) 0.31 (0.04) 0.32 (0.04) 0.32 (0.04)
Nonlinear data
ca ¼ 0 15.27 (2.83) 13.79 (2.04) −0.10 (0.31) −0.06 (0.23)
c/ ¼ 0:6 1.00 (0.01) 0.99 (0.01) 0.67 (0.10) 0.67 (0.10)
cw ¼ −3 −2.12 (0.03) −2.29 (0.04) −2.96 (0.07) −2.97 (0.07)
ra ¼ 1 0.98 (0.15) 0.61 (0.07) 0.97 (0.16) 0.99 (0.16)
r/ ¼ 0:05 0.00 (0.00) 0.00 (0.00) 0.06 (0.03) 0.06 (0.03)
rw ¼ 0:3 0.13 (0.03) 0.17 (0.03) 0.31 (0.04) 0.31 (0.04)

Notes: The terms “Splines (K/L)” indicate that the common smooth term 
had K basis functions and the individual smooth terms had L basis func-
tions. True values of each parameter are shown in the leftmost column. 
The number shows average posterior means, with standard deviations 
of posterior means in parentheses.
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but estimated the standard deviation very close to its 
true value.

Figure 2 shows the posterior means of sðxÞ across 
all simulated datasets when the true trend was nonlin-
ear, together with the average of the posterior means 
and the true function. With the two most flexible 
spline models, the estimates for each dataset as well as 
the average are close to the true value, whereas both 
the linear model and the constrained spline model 
failed spectacularly in capturing the true trend.

Table 1 and Figure 2 also illustrate a practical 
method of choosing the number of basis functions for 
a particular analysis. Firstly, we see that the smooth-
ing prior protects against overfitting, since the most 
flexible model ðK ¼ 40=L ¼ 20Þ had practically identi-
cal performance to the model with K ¼ 20 and L ¼
10: Hence, the main concern is to ensure that the 
splines are flexible enough to allow proper estimation 
of the underlying function. This can be achieved by 
gradually increasing the number of basis functions, 

while monitoring the estimates of the parameters of 
interest. When the parameters of interest no longer 
change notably when the basis size increases, we have 
a clear indication that the chosen values of K and L 
are large enough. In this simulation example it was 
thus clear that ðK ¼ 4=L ¼ 4Þ was too small but ðK ¼
20=L ¼ 10Þ was sufficiently large.

Analysis of daily diary data on alcohol 
consumption

We here present an application of the proposed meth-
ods using a dataset from Carney et al. (2000). The 
data consist of daily reports of alcohol consumption, 
desire to drink, and perceived stress from 93 individu-
als followed over a period of 60 days. Carney et al. 
(2000), which we refer to for further details, analyzed 
a subset of 83 individuals, removing 10 who were 
unemployed at the time of data collection. Figure 3
shows descriptive summaries of the three main 

Figure 2. The black lines show the posterior mean of the common smooth function sðxÞ for each simulated dataset when using a 
linear model (top left), constrained splines (top right), more flexible splines (bottom left), and very flexible splines (bottom right). 
The thick orange line shows the average across simulations and the thick blue line shows the true function. Note that the y-axis 
scale differs between figures.
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variables of interest. Considering the top row, there 
seems to be a weak downward trend in alcohol con-
sumption and desire to drink throughout the study 
period. The bottom row demonstrates cyclic patterns 
in alcohol consumption, with an increase throughout 
the week and a peak on Saturday. A weaker cycle is 
also apparent in desire to drink. Perceived stress, on 
the other hand, seems very stable both throughout the 
study period and during the week. Also note from 
Figure 3 that there are large individual variations in 
average level for all three variables. There might also 
be individual variations in the cyclic patterns, but this 
is harder to detect by the naked eye.

Carney et al. (2000) analyzed an extended version 
of the data using multilevel linear regression models, 
studying how alcohol consumption and desire to 
drink could be predicted by perceived stress and posi-
tive and negative events on the same day. Liu and 
West (2016) used the data to illustrate the 

consequence of ignoring weekly cycles in daily report 
data, still in the context of multilevel regression mod-
els. Given the large number of timepoints per individ-
ual and the relatively dense sampling, we here instead 
focus on the temporal dynamics. We start by studying 
how alcohol consumption on a given day depends on 
alcohol consumption the day before, using an AR(1) 
model. We then consider the autoregressive and 
cross-lagged effects between alcohol consumption, 
desire to drink, and perceived stress, using a VAR(1) 
model.

AR(1) model with cyclic and long-term trends

Our level-1 model is given by (2) and the first three 
lines of the level-2 model are given by (3)–(5). 
However, to allow alcohol consumption to vary by 
weekday, we modify (6) so it contains both a long- 
term trend in alcohol consumption over the duration 

Figure 3. Descriptive plots of the data. The top row shows the average alcohol consumption, desire to drink, and perceived stress 
level across the 93 participants over the 60 days of the study. Shaded regions show ± one standard deviation. In the bottom row, 
the thin lines show the average across weekdays for each participant, and the thick black line shows the average over all 
participants.
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of the study as well as a cyclic term varying by week-
day. The smooth terms thus become

fi xitð Þ ¼ scycle x1itð Þ þ strendðtÞ þ scycle, i x1itð Þ þ strend, iðtÞ,
(23) 

where xit ¼ ðx1it , tÞ0 is a vector containing the weekday 
x1it 2 f1, :::, 7g: The day of the study t 2 f1, :::, 60g
did not correspond to the same calendar day for each 
participant, so in general we have x1it 6¼ x1jt for i 6¼ j:

In Equation (23), scycleðx1itÞ is a cyclic cubic spline 
(Wood, 2017a, Ch. 5.3.2) constrained so that the end-
points match up to second derivatives, and scycle, iðx1itÞ

are individual splines defined equivalently. That is, let-
ting f ðdÞðxÞ denote the d’th derivative of some func-
tion f ðxÞ; we require sðdÞcycleð1Þ ¼ sðdÞcycleð7Þ and 
sðdÞcycle, ið1Þ ¼ sðdÞcycle, ið7Þ for d ¼ 0, 1, 2 and i ¼ 1, :::, N:
Considering the bottom left panel of Figure 3, 
Tuesdays and Wednesdays were chosen as endpoints, 
since the assumption of matching values up to second 
derivatives seemed more likely to be satisfied for these 
days rather than Mondays and Sundays, i.e., 
Wednesday corresponded to x1it ¼ 1 and Tuesdays 
to x1it ¼ 7:

Both the common and individual cyclic splines 
were set up using seven basis functions with knots 
placed on each weekday. In addition, strendðtÞ is a 
smooth term representing any overall trend across the 
duration of the study, and strend;iðtÞ is an additional 
individual component for the overall trend. Both 
trend terms were set up using six cubic regression 
splines as basis functions. We do not have access to 
information about the date of data collection for each 
individual, and thus strendðtÞ may represent a mix of 
seasonal effects (Cho et al., 2001) and potential 
reactivity effects, by which the measurement itself 
influences behavior (Shiffman et al., 2008).

Priors and the computational set-up were as 
described for the simulations in “Bayesian estimation”, 
except that we now used the default value of 10 for 
the treedepth. Obtaining 12,000 post-burn-in draws 
from the posterior took about 15 min on a MacBook 
Pro. Supplementary Figure S1 shows diagnostics for 
the Hamiltonian Monte Carlo algorithm, which indi-
cate that the chains mixed well. The effective sample 
size averaged 10,906 over all parameters and was 
always above the lower bound of 400 suggested by 
Vehtari et al. (2021), while the R̂ statistic was very 
close to 1 and well below the upper limit of 1.01 
which may indicate convergence problems (Vehtari 
et al., 2021).

Model selection
We first compared the full spline model (23) to six 
simpler models. First, models were fitted without 
either the individual cyclic term, the individual trend 
term, or without both individual terms. A model com-
parison using Bayes factors gave strong support for 
removing the individual trend term but keeping the 
individual cyclic term. Next, we performed the same 
analysis by removing the common cyclic term, the 
common trend term, or both. The Bayes factors still 
showed strong support for the model containing both 
common terms as well as individual cyclic terms, over 
all of these simpler models. Hence, in the chosen 
model the full smooth term (23) was reduced to

fi xitð Þ ¼ scycle x1itð Þ þ strendðtÞ þ scycle, i x1itð Þ:

The marginal likelihood of each model was com-
puted using bridge sampling (Meng & Schilling, 
2002), with the bridgesampling package (Gronau 
et al., 2020), from which the Bayes factors could be 
directly calculated. The marginal likelihoods of all 
models are shown in Supplementary Table S1.

Posterior estimates
We here present posterior estimates from the chosen 
model. Figure 4 (left) shows a cyclic pattern, whereby 
the consumption increases considerably on Fridays 
and Saturdays, and then drops steeply again on 
Sundays. Figure 4 (right) shows that alcohol consump-
tion has a moderate downward trend throughout the 
study.

Figure 5 shows histograms of the individual inter-
cepts, autoregressive coefficients, and noise levels. 
Note that there is large variability in intercepts, mean-
ing that the average consumption varies considerably 
between people. Also the noise level has high variabil-
ity, implying large variation in day-to-day fluctuation 
among individuals. The center plot in Figure 5 for the 
autoregressive coefficient shows that for most people, 
the deviation from the overall trend on a given day is 
weakly positively correlated with the deviation on the 
previous day.

Table 2 summarizes the population-level means 
and standard deviations. First, we see clear evidence 
that the mean intercept, autoregressive effect, and 
residual standard deviation are larger than zero. Also 
the standard deviations for the same quantities are 
nonzero with relatively narrow credible intervals, indi-
cating the presence of individual variability. 
Considering the smooth terms, scycle is the smoothing 
parameter for scycleðx1itÞ and scycle;ind the common 
smoothing parameter for all scycle, iðx1itÞ: We see that 
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the latter is larger than the former, showing that the 
common cyclic term’s deviation from linearity is 
larger than the deviation from linearity of the individ-
ual terms around this common term. The smoothing 
parameter for the common trend term, strend is small 
and contains zero in its credible interval, suggesting 
that a linear term would be sufficient here. This is 
also in accordance with what we see in the bottom 
row of Figure 4 and highlights a strength of the 
Bayesian approach with smoothing priors; when 
the data don’t provide evidence of large nonlinearities, 
the posterior distribution will tend toward linearity.

VAR model for positive and negative daily events, 
perceived stress, and alcohol use

We next considered a VAR(1) model for alcohol con-
sumption, y1it; desire to drink, y2it; and perceived 
stress, y3it; with level one as defined in Equation (16). 
Based on the AR(1) analyses in the previous section 
and the plots in Figure 3, we modeled the cycles in 
alcohol consumption and desire to drink using hier-
archical smooth terms and the long-term trends with 
linear effects. No cyclic term was included for 
perceived stress. The smooth function was thus 

defined by

f i xitð Þ ¼

f1i xitð Þ
f2i xitð Þ
f3i xitð Þ

2

4

3

5 ¼

scycle, 1 x1itð Þ þ scycle, 1i x1itð Þ þ b1it
scycle, 2 x1itð Þ þ scycle, 2i x1itð Þ þ b2it

b3it

2

4

3

5, 

where scycle, 1ðx1itÞ and scycle, 2ðx1itÞ are cyclic terms for 
alcohol consumption and desire to drink. Since these 
are qualitatively different variables, measured in differ-
ent units, we did not use a common smooth term as 
in (22) and used separate smoothing parameters, sb, 1 
and sb, 2: Next, scycle, 1iðx1itÞ and scycle, 2iðx1itÞ are indi-
vidual terms for each domain, with smoothing 

Figure 4. Smooth terms for the AR(1) model for alcohol consumption. The solid black lines are posterior means and the shaded 
regions are 95% credible intervals.

Figure 5. Histograms of the individual intercepts, autoregressive coefficients, and residual standard deviations.

Table 2. Summary of the population parameters of the AR(1) 
model for alcohol consumption.
Parameter Mean 95% credible interval

ca 1.65 (1.50, 1.80)
c/ 0.06 (0.02, 0.10)
cw 0.09 (−0.08, 0.26)
EðwiÞ 1.24 (1.12, 1.38)
ra 0.73 (0.63, 0.86)
r/ 0.13 (0.09, 0.17)
rw 0.82 (0.70, 0.95)
scycle 0.13 (0.06, 0.29)
scycle;ind 0.06 (0.05, 0.07)
strend 0.02 (0.00, 0.06)

Note: EðwiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp fcw þ r2

w=2g
q

is the estimated population mean of 

the residual standard deviation.
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parameters sb, ind;1 and sb, ind;2: The cyclic terms were 
set up as for the AR(1) model of the previous section.

The regression coefficients for the long-term trend, 
bi ¼ ðb1i, b2i, b3iÞ

0
; were assumed normally distributed 

with mean cb and allowed to be correlated with the 
intercepts, autoregressive and cross-lagged effects, and 
residual standard deviations. Hence we added an add-
itional line bi ¼ cb þ ubi to the level-2 model (17)– 
(20), yielding the vector of individual deviations ui ¼

ðu0ai, u0bi , u0/i , u0wiÞ
0 and the covariance matrix T 

expanded accordingly.
Both the computational set-up and the priors were 

identical to the previous section, and obtaining 12,000 
post-burn-in samples took about an hour on a 
MacBook Pro. Model diagnostics indicated that the 
chains were mixing well, and is summarized in 
Supplementary Figure S2.

Imputation of missing values
Of the 5580 timepoint-individual combinations, there 
were 24 missing observations of desire to drink and 
30 missing observations of perceived stress. We 
imputed these by imposing a weakly informative prior 
on the missing observations, a normal distribution 
with mean 4 and standard deviation 2 for desire to 
drink and mean and standard deviation 2 for per-
ceived stress. We then sampled the missing values 
simultaneously with all other model parameters, con-
ditional on the data. This ensures that uncertainty 
about the missing values is properly incorporated in 
the posterior distributions of all parameters and also 
that the posterior distribution of the missing values is 
marginalized with respect to all other parameters.

Posterior estimates
Figure 6 shows the common smooth terms and the 
individual smooth terms for alcohol consumption and 
desire to drink. In the left part, we see that alcohol 

consumption has a pattern similar to the one shown 
in Figure 4 (left), and that most individuals have rela-
tively similar patterns. Figure 6 (right) indicates that 
desire to drink has a cyclic pattern similar to alcohol 
consumption, but in this case it is clear that a number 
of individuals deviate from the common trend. In par-
ticular, some curves are basically flat, indicating that 
these individuals have very small weekly variations in 
their desire to drink. Note however that with 60 time-
points we only have � 8:5 weeks of observations per 
individual, and hence the individual curves are likely 
to be drawn strongly toward the common curve due 
to the pooling effect inherent in hierarchical models. 
With a higher number of timepoints, it might have 
been possible to detect larger individual deviations 
from the mean curve. Supplementary Table S4 shows 
the inverse smoothing parameters for the four cyclic 
terms, none of whose 95% credible intervals included 
zero, suggesting that both the common cyclic terms 
and the individual deviations from the cyclic terms 
are indeed nonlinear.

Supplementary Table S2 shows posterior means 
and credible intervals for the 18 population means 
ðca , cb, c/, cwÞ

0
; and Supplementary Table S3 shows the 

same for the 18 standard deviations ðra, rb, r/, rwÞ
0

describing the individual variation around these 
means. From the tables, we note in particular that 
both desire to drink and perceived stress have rela-
tively high autoregressive effects, with means c/, 22 ¼

0:18 ð0:14, 0:22Þ and c/, 33 ¼ 0:20 ð0:15, 0:24Þ;
respectively, where the numbers in parentheses are 
95% credible intervals. The autoregressive coefficient 
of alcohol consumption was down to c/, 11 ¼

0:03 ð−0:01, 0:08Þ; from 0:06 ð0:02, 0:10Þ in the 
AR(1) model. There is also evidence of individual 
variability in these parameters, with standard 
deviations r/, 22 ¼ 0:12 ð0:06, 0:17Þ and r/, 33 ¼

0:17 ð0:14, 0:22Þ; respectively. The only cross-lagged 

Figure 6. Posterior means of the common cyclic curves (solid black lines) and the individual cyclic curves (thin gray lines) for alco-
hol consumption (left) and desire to drink (right).
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effect for which the 95% credible interval did not 
include zero was the effect of alcohol consumption on 
desire to drink the next day. This effect was negative, 
c/, 12 ¼ −0:20 ð−0:25, − 0:15Þ; indicating that above 
average consumption on one day leads to a reduction 
in desire to drink the next day. This was also the 
only cross-lagged effect for which there was evidence 
for substantial individual variability, r/, 12 ¼

0:12 ð0:08, 0:17Þ: The regression coefficients for long- 
term linear trends had small negative values for alco-
hol consumption and desire to drink, and a small 
positive value for perceived stress, with evidence for 
individual variability.

Discussion

We have proposed an extension of the DSEM frame-
work using penalized regression splines which allows 
flexible modeling of nonlinear effects of time- 
dependent covariates both at the population level and 
the individual level. In contrast to alternative 
approaches using nonlinear models, regression splines 
require minimal assumptions about the functional 
forms, and are able to learn basically any smooth 
function from data. In multivariate models, splines 
allow borrowing strength across variables, as illus-
trated in “Multivariate hierarchical smooth terms”. 
While we have considered AR(1) and VAR(1) models 
in particular, the extensibility of the Stan language 
combined with its highly efficient sampling algorithm 
allows our openly available code to be incorporated 
into the within-level model of basically any DSEM, as 
we outline in Appendix A.

Our simulation experiments in “Simulation 
experiment” demonstrated how ignoring nonlinear 
effects, or simply using too restrictive nonlinear mod-
els, may lead to biases in all parameters of interest, 
whereas allowing sufficient flexibility alleviated these 
issues. Conversely, when the truth is linear, the price to 
pay in terms of statistical power was very low in the 
settings considered here. This is likely due to the fact 
that the smoothing priors indeed put most of the prior 
probability mass on functions which are close to linear.

In “Analysis of daily diary data on alcohol con-
sumption”, we demonstrated how cyclic cubic splines 
can model weekly patterns in alcohol consumption 
and desire to drink, and be incorporated into a larger 
model also containing long-term trends. Compared to 
sine-cosine functions, which have perfectly symmetric 
shape within each period, cyclic splines only require 
that the endpoints match up to second derivatives. As 
can be seen in Figure 6 (left), this flexibility was 

particularly useful for modeling alcohol consumption, 
which was low during the weekdays and had a sharp 
peak on Fridays and Saturdays. Despite the larger 
number of parameters, obtaining samples of sufficient 
size from the posterior distributions required very 
moderate computational efforts.

One particularly interesting future development 
would be to let the level-2 parameters in Equations 
(17)–(19) depend smoothly on covariates of interest. 
For example, in cognitive testing or educational meas-
urement the individual intercepts ai and autoregres-
sive effects Wi might depend nonlinearly on age, or 
on exposures like participation in training programs. 
We will explore this in future work.
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be used to run the code and produce similar results.
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Appendix 

Within-level smooths in DSEM

We here show how smooth terms can be incorporated into 
the within-level model in the general cross-classified DSEM 
framework of Asparouhov et al. (2018), and then derive the 
AR(1) model of “Two-level AR(1) models” section and the 
VAR(1) model of “Two-level VAR(1) models” section as 
special cases. The notation in this appendix deviates some-
what from that used in the rest of the paper. 

A brief review of cross-classified DSEM

We start by decomposing the observed responses yit 2 R
P 

into an individual-specific part y2, i; a timepoint-specific 
part y3, t; and the deviation of individual i at timepoint t, 
y1, it; yielding

yit ¼ y1, it þ y2, i þ y3, t: (A1) 

We next specify a measurement model for each term on 
the right-hand side of (A1) and a corresponding structural 
model for latent variables g3, t; g2, i; and g1, it varying 
between timepoints, between individuals, and between indi-
viduals and timepoints, respectively.

The between-timepoints model is

y3, t ¼ m3 þ K3g3, t þ K3X3, t þ e3, t (A2) 

g3, t ¼ a3 þ B3g3, t þ C3X3, t þ n3, t , (A3) 

where m3 and a3 are intercepts, K3 is a loading matrix, K3 
and C3 are matrices of regression coefficients for covariates 
X3, t which vary between timepoints but not between indi-
viduals, B3 are regression coefficients between latent varia-
bles, and e3, t and n3, t are noise terms. The between- 
individuals model is similarly

y2, i ¼ m2 þ K2g2, i þ K2X2, i þ e2, i (A4) 

g2, i ¼ a2 þ B2g2, i þ C2X2, i þ n2, i, (A5) 

where X2, i is a matrix of covariates varying between indi-
viduals but not between timepoints. All other parameters in 
(A4)–(A5) have similar interpretations as those in 
(A2)–(A3).

In the residual DSEM formulation, the within-level 
model has a structural part

y1, it ¼ m1 þ K1, 0itg1, i, t þ R0ity1, i, t þ K1itX1, it þ ŷ1, it (A6) 

g1, it ¼ a1 þ B1, 0itg1, i, t þ Q0ity1, i, t þ C1itX1, it þ ĝ1, it , (A7) 

where R0it and Q0it are regression coefficients between the 
components of y1, it and g1, it; respectively, and X1, it is a 
matrix of regression coefficients allowed to vary both 
between timepoints and between individuals. The other 
parameters have the same interpretation as in the between- 
level model, except that the residuals are now written ŷ1, it 
and ĝ1, it: The it subscripts indicate that the within-level 
parameters can vary both between individuals and between 
timepoints, cf. Equation (8) in Asparouhov et al. (2018). 
The autoregressive parts relate the residuals through the 
equations

ŷ1, it ¼
XL

l¼1
K1, litĝ1, i, t−l þ

XL

l¼1
Rlitŷ1, i, t−l þ e1, it (A8) 

ĝ1, it ¼
XL

l¼1
B1, lit ĝ1, i, t−l þ

XL

l¼1
Qlitŷ1, i, t−l þ n1, it , (A9) 

where the integer L � 1 represents the extent of the lag and 
K1, lit; Rlit; B1, lit; and Qlit are matrices of autoregressive 
effects and cross-correlations relating the residuals at time 
t − l to the residuals at time t.
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Within-level smooth terms in DSEM

Within-level smooth terms occur most naturally in the 
structural part (A6)–(A7) of the residual DSEM formula-
tion. We can simply replace the linear regression terms 
K1itX1, it and C1itX1, it with vectors f yiðxitÞ and f giðxitÞ of 
smooth terms predicting the measurements or the latent 
variables, respectively. This gives the modified structural 
part

y1, it ¼ m1 þ K1, 0itg1, i, t þ R0ity1, i, t þ f yi xitð Þ þ ŷ1, it (A10) 

g1, it ¼ a1 þ B1, 0itg1, i, t þ Q0ity1, i, t þ f gi xitð Þ þ ĝ1, it: (A11) 

Estimating the resulting DSEM would require smoothing 
priors as described in “Two-level AR(1) models” and “Two- 
level VAR(1) models”.

Recovering the AR(1) and VAR(1) models

The models considered in “Two-level AR(1) models” and 
“Two-level VAR(1) models” are two-level DSEMs with no 
between-timepoint model (A2)–(A3), and hence y3, t ¼ 0 and 
g3, t ¼ 0: We also assume the latent variables are directly 
observed, i.e., g2, i ¼ y2, i; and can hence ignore the measure-
ment model (A4) and plug y2, i directly into (A5) to get 
y2, i ¼ a2 þ B2, iy2, i þ C2X2, i þ n2, i: We further assume no 
regressions between variables at a given timepoint, so we set 
B2, i ¼ 0 and we have no level-2 covariates so also C2X2, i can 
be dropped, yielding the between-individual model y2, i ¼

a2 þ n2, i; which in the notation of “Two-level VAR(1) mod-
els” section becomes y2, i ¼ ca þ uai:

Since we also assume g1, it ¼ y1, it at the within-level, we 
can ignore the measurement models (A10) and (A8), set 
a1 ¼ 0 for identifiability, and plug y1, it directly into (A11) 
and (A9) to get the structural and autoregressive parts as  

y1, it ¼ B1, 0ity1, i, t þ f i xitð Þ þ ŷ1, it (A12) 

ŷ1, it ¼
XL

l¼1
B1, litŷ1, i, t−l þ n1, it , (A13) 

where the matrix Qlit has been dropped since it in this case 
becomes identical to B1, lit and we have omitted the g sub-
script on the smooth term. We have no regressions between 
variables at a given timepoint, and can hence set B1, 0it ¼ 0 
and our lag is L ¼ 1; so (A12)–(A13) simplify further to  

y1, it ¼ f i xitð Þ þ ŷ1, it (A14) 

ŷ1, it ¼ B1, 1itŷ1, i, t−1 þ n1, it: (A15) 

Plugging (A15) into (A14) and using y1, it ¼ yit − ai and 
ŷ1, i, t−1 ¼ y1, i, t−1 − C1, 0itX1, i, t−1 we get  

yit − ai ¼ f i xitð Þ þ B1, 1it yit − ai − f i xi, t−1ð Þ
� �

þ n1, it (A16) 

which can be easily reorganized to yield (16), recognizing 
B1, 1, it as Ui and n1, it as di: The AR(1) model (2) is recov-
ered as the special case where yit is univariate.
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