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A B S T R A C T

Based on findings from a simulation study, Parsons and McCormick (2024) argued that growth models with
exactly two time points are poorly-suited to model individual differences in linear slopes in developmental
studies. Their argument is based on an empirical investigation of the increase in precision to measure individual
differences in linear slopes if studies are progressively extended by adding an extra measurement occasion after
one unit of time (e.g., year) has passed. They concluded that two-time point models are inadequate to reliably
model change at the individual level and that these models should focus on group-level effects. Here, we show
that these limitations can be addressed by deconfounding the influence of study duration and the influence
of adding an extra measurement occasion on precision to estimate individual differences in linear slopes. We
use asymptotic results to gauge and compare precision of linear change models representing different study
designs, and show that it is primarily the longer time span that increases precision, not the extra waves.
Further, we show how the asymptotic results can be used to also consider irregularly spaced intervals as well
as planned and unplanned missing data. In conclusion, we like to stress that true linear change can indeed be
captured well with only two time points if careful study design planning is applied before running a study.
1. Introduction

Latent Curve Models (LCM) and Latent Change Score Models
(LCSM) have become standard techniques to model individual differ-
ences in change over time (Grimm et al., 2012; Kievit et al., 2018;
McCormick et al., 2023). In these models, the latent factors represent
both group-level and individual differences in some assumed shape of
change (e.g., a difference, a linear function, a quadratic curve) over
multiple occasions of measurement. Modeling individual differences
in change is of central interest in developmental studies spanning
the lifetime because humans differ in their rates of change across
various domains of functioning (e.g., cognitive, motor, or affective) and
levels of analysis (e.g., behavioral or neural) (Lindenberger, 2014). To
appropriately model these trajectories and advance scientific theory,
statistical models of change must have adequate precision to measure
both mean change and individual differences in change. Typically, sta-
tistical power – that is, the probability of finding a hypothesized effect
if it really exists – is considered as the primary measure of precision.
In addition, more general metrics to gauge the sensitivity of latent

✩ A preprint and supplemental code are available at https://osf.io/3g2z6.
∗ Correspondence to: Wassenaarseweg 52, 2333 AK Leiden, The Netherlands.
E-mail address: e.m.mccormick@fsw.leidenuniv.nl (E.M. McCormick).

models for individual differences in linear change are available, such
as effective error variance and effective curve reliability (Brandmaier
et al., 2018; Rast and Hofer, 2014; Willett, 1989).

Linear latent change score models are often used as a parsimonious
approach to estimate an average gradient of change, typically referred
to as linear slope, as well as individual differences in the linear slope
across persons. Even if true change is non-linear, they often serve as
useful tools to linearly approximate change in a given time window (but
see Ghisletta et al. 2020). At least to a limited degree, they also allow
for modeling non-linear change if the dependent variable or the timing
variable is transformed using a non-linear transformation, such as the
logarithm or the square-root. These models are becoming increasingly
prevalent within the field of developmental cognitive neuroscience,
and primers on latent change scores and latent curve models have
recently made these methods much more accessible (Kievit et al., 2018;
McCormick et al., 2023), including code for fitting them in practice. For
specific reference to the two time point model, see the explication by
Parsons and McCormick (2024).
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Developmental Cognitive Neuroscience 70 (2024) 101450 
In a recent article, some of us (Parsons and McCormick, 2024)
offered a critique of current practices for modeling longitudinal data
with relatively few measurement occasions, especially in relation to the
recent increase in two-time point models using data from the Adoles-
cent Brain Cognitive Development [ABCD; Casey et al. (2018)] study.
Parsons and McCormick (2024) investigated the precision with which
individual difference scores (using LCSMs) and slopes (using linear and
quadratic LCMs) can be estimated. As a metric for the precision of the
model, Parsons and McCormick (2024) proposed the correlation of the
estimated individual slopes and the true slopes. They found that the
correlation was quite poor for the two-time point models considered,
and the correlation increased with every measurement occasion added
to the model. From this observation, they concluded that two-time-
point models are poorly suited to model individual differences in slopes
in developmental psychology, as the shared variance between true
change scores and estimated change scores was low (16.8% in their
simulation conditions), although they highlight that other features,
such as mean change, can be captured more reliably.

Parsons and McCormick (2024) paint a relatively gloomy picture
for models with two time points as they are typically used — that is,
the first two measurement occasions of a longitudinal study that are
relatively closely spaced in time (most often on an annual or biannual
basis). However, it is theoretically and practically possible to design
studies with high precision to estimate linear change with only two
time points if we are willing to depart from these typical use-cases.
Here we lay out strategies for doing so. Our main argument is two-time
point models are often inadequate because the time elapsing between
measurements is simply too short in relation to the development of
individual differences in linear slopes. To answer the question whether
two-time point models are generally inadequate in capturing individual
differences in change, we need to systematically vary (i.e., unconfound)
the number of measurement occasions from the time elapsing between
measurements. In the remainder of this manuscript, we will show
how asymptotic estimates of precision can be leveraged to gauge and
compare the precision of different study designs analyzed with linear
latent change score models. From these results, we can see that the
effect of total study time on precision is quadratic and can be more
influential than the number of measurement occasions, especially in
longitudinal designs with low measurement frequency (e.g., less than
five measurement occasions). In such cases, the increase in statistical
power by adding another measurement largely reflects the increase in
study duration rather than the addition of another observation. In the
remainder, we demonstrate how a principled understanding of study
duration and number of measurement occasions can guide the design
of studies that make optimal use of scarce resources (e.g., measurement
occasions) in achieving precision and reliability of the estimated effects
(also see Brandmaier et al. 2015).

For simplicity of our argument, we deviate slightly from the main
model specification suggested by Parsons and McCormick (2024). They
chose measurement error variance at each occasion such that the
variance explained by latent intercept and slope is 50% of the total
observed variance at every time point. However, this corresponds to a
measurement instrument that becomes systematically less reliable over
time, which we argue is not the most common case in longitudinal
studies span multiple years (yet, systematic influences on reliability
may arise be due to participants growing acclimated to the scanner
or bored with the experiment). For example, if we assume that we in-
vestigate training-related gains (say, in episodic memory performance)
in a training study, then intercept variance in the LCM corresponds
to the individual differences in memory performance at study onset.
Parsons and McCormick (2024) set the residual error variance at 𝜎2𝑒 = 1,
hus reliability of the measurement instrument at the first wave is 0.5.
fter five years, the variance explained by intercept and slope and the
esidual error each are 1+2⋅5⋅0.15+52⋅.25 = 8.75 (assuming an intercept-
lope-correlation of 0.15 and a slope variance of 0.25). That is, after five

ears, the measurement instrument is assumed to only have a reliability

2 
f 1
1+8 ≈ 0.10. In the remainder, we deviate from this and assume a

measurement instrument with constant reliability over time, consistent
with the sensitivity analysis presented in the Supplemental Code (https:
//osf.io/9rjcv/) provided by Parsons and McCormick (2024).

To evaluate the precision with which a latent construct can be
measured given a particular longitudinal study design (e.g., number
and timing of observations), we can rely on the notion of effective
error (Brandmaier et al., 2018; von Oertzen and Brandmaier, 2013).
Effective error is an asymptotic estimate of the measurement error for
a given measurement instrument used to assess a latent construct. The
(inverse of the) variance of the effective error gives a valid measure
of precision that, together with ideas from classic test theory, can be
used to derive a reliability measure for latent variables (Brandmaier
et al., 2018), making it a useful tool to compare precision across a
wide array of study design conditions. von Oertzen and Brandmaier
(2013), Brandmaier et al. (2015) developed the asymptotic equations
for the effective error of the linear slope in linear latent growth models.
For a linear latent growth model with 𝑀 observations that occur
at time points 𝑡1, 𝑡2,… , 𝑡𝑀 , an intercept variance 𝜎2𝐼 , and a residual
error variance 𝜎2𝐸 , and no intercept-slope-correlation, the effective error
variance is:

𝜎2𝑒𝑓𝑓 =
𝜎2𝐸

∑

𝑡2𝑖 − 𝜎2𝐼∕
(

𝜎2𝐼 ⋅𝑀 + 𝜎2𝐸
)

⋅
(
∑

𝑡𝑖
)2

(1)

As we can see, the precision with which we can estimate lin-
ar slopes scales with the residual error (that is, the inverse of the
recision) of the measurement instrument used at every wave (𝜎2𝐸),
nd quadratically depends on total study time 𝑡𝑀 . Similar but more

complex solutions for models with non-zero intercept-slope-correlation
exist (Brandmaier et al., 2018).

2. Precision of individual differences in linear slopes

Brandmaier et al. (2015, 2018) proposed effective curve reliability
(ECR) to gauge the sensitivity of a growth model to measure individual
differences in linear slopes (represented as the variance of the latent
linear slope variable of a LCM). ECR is the ratio of true-score variance,
here the slope variance 𝜎2𝑆 to the sum of true-score variance and error
variance, here 𝜎2𝑒𝑓𝑓 . ECR is an estimate of the slope reliability, which
ranges between 0 and 1, with higher values indicating higher reliabil-
ity. This interpretation follows from classical test theory and can be
understood as the reliability of the slope as if the slope were measurable
with a single observation. For a given sample size and significance
level, ECR directly translates to statistical power of hypotheses about
the slope. Importantly, we can derive the asymptotic correlation of the
estimated slopes and true slopes, which was proposed as a measure
of precision by Parsons and McCormick (2024), directly from ECR.
Consider a model with two observed variables, one is the true score
(with variance 𝜎2𝑡 ) and one is a true score that is a noisy observation of
he true score (with error variance 𝜎2𝑒 ). From this model, we can derive
he covariance matrix of those two variables (representing the noisy
bservation and the true score):

[

𝜎2𝑡 + 𝜎2𝑒𝑓𝑓 𝜎2𝑡
𝜎2𝑡 𝜎2𝑡

]

(2)

Given that the true scores represent true linear slopes, the upper
ight element (or, by symmetry, the lower left element), 𝜎2𝑡 corresponds
o the covariance of true slopes and estimated slopes. The upper left
lement is the variance of the slopes estimated from a LCM or LCSM,
nd the lower right element is the variance of the true slopes. From
his, we can derive the correlation of true slopes and estimated slopes
sing the well-known transformation of a covariance into a correlation
s:

�̂�𝑥,�̂� =
𝜎2𝑡

√

𝜎2 ⋅
√

𝜎2 + 𝜎2
(3)
𝑡 𝑡 𝑒𝑓𝑓

https://osf.io/9rjcv/
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Developmental Cognitive Neuroscience 70 (2024) 101450 
Fig. 1. Asymptotic (red) and simulated (blue) correlations of true slopes and estimated slopes. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
hich we can simplify further to

�̂�𝑥,�̂� =

√

√

√

√

𝜎2𝑡
𝜎2𝑡 + 𝜎2𝑒𝑓𝑓

=
√

𝐸𝐶𝑅 (4)

This connection allows us to asymptotically compute the precision
f individual slope estimates as proposed by Parsons and McCormick
2024) without the need to resort to simulation-based approaches. It
rovides us with means to evaluate and compare different linear latent
rowth curve models in terms of the correlation of true individual linear
lopes and estimated individual linear slopes.

To illustrate, we first evaluate the asymptotic correlation for the
odel proposed by Parsons and McCormick (2024). They defined a

atent covariance matrix of intercept and slope (co)variances:

𝛹 =
[

1 0.15
0.15 0.25

]

(5)

ith equally spaced measurement occasions at every unit of time
e.g., years). As mentioned before, Parsons and McCormick (2024)
hose a model in which measurement error increases as a function of
ime. Here, we assume that reliability of the measurement instrument
e.g., a magnet resonance [MR] scanner or a questionnaire) is stable
ver time. We choose a residual error variance of 1, which corresponds
o the residual error variance chosen by Parsons and McCormick (2024)
t study inception.

Given these assumptions, effective error variance can now be easily
omputed for different study designs. To illustrate, effective error vari-
nce for a three-time point model can be computed by substituting the
ssumptions about true model parameters into Eq. (1) (for simplicity
f the argument, assuming no intercept-slope covariance for now):

𝜎2𝑒𝑓𝑓 = 1
(

02 + 12 + 22
)

− 1∕ (1 ⋅ 3 + 1) ⋅ (0 + 1 + 2)2
= 0.3125 (6)

thus, ECR is

𝐸𝐶𝑅 = 0.25
0.25 + 0.3125

= 0.44 (7)

Using our earlier result (Eq. (4)), we obtain an asymptotic correla-
tion of true scores and estimated scores of

√

0.44 = 0.66. Fig. 1 shows a
comparison of the asymptotic and simulated values based on this model
where the number of time points is varied between 2 and 8 (the original
simulation only varied between 2 to 5 time points).As can be seen, the
asymptotic results closely match the simulated results.
3 
2.1. Maximizing the utility of only two time points

The poor performance of the two-time point model assessed in Par-
sons and McCormick (2024) reflects the combination of two separable
factors: a low number of measurement occasions (i.e., two), and a short
duration of the study. Their resulting critique of two-occasion models
was targeted at secondary data analyses of large on-going studies of
developmental change, where this confounding is brought about by the
sequential release of available data (e.g., as subsequent measurement
occasions are being completed). . In these designs, and in the critique
by Parsons and McCormick (2024), adding a measurement occasion
always increases the total study time span by roughly one unit of
time, thereby producing a complete confound between study duration
and number of occasions. However, this confound is by no means
inevitable. Instead, on the basis of Eq. (1) and for a given ECR, we
can plan longitudinal studies that optimize the relation between these
two design parameters to detect variance in change (Brandmaier et al.,
2015).

From Eq. (1), we can infer that the effect of time on ECR is asymp-
totically quadratic, that is, increasing total study time has typically a
larger effect than adding a measurement occasion when keeping total
study time constant. In earlier work, we have illustrated this effect in
an example inspired from a memory task in the Berlin Ageing Study
(BASE). This study had 6 waves over 13 years. von Oertzen and Brand-
maier (2013) showed that a study with only 5 waves would only have to
last 12 days longer to have identical statistical power. In other words,
by removing an entire wave from the study virtually no precision or
statistical power to detect individual differences in linear slopes was
lost. Using the asymptotic results from above, we can investigate the
effect of study duration and number of measurement time points for the
model proposed by Parsons and McCormick (2024). Fig. 2 shows the
asymptotic correlation of true slopes and estimated slopes as a function
of both time and number of equally-spaced time points. We can see that
with increasing study duration, the correlation increases. Importantly,
for a given study duration, equally distributing more waves in the same
amount of time, has hardly an effect on the correlation. This is because
the effect of total study time is quadratic in the precision and dominates
the terms that arise from adding measurement occasions (see Eq. (1)).
Vice versa, a two-time point model with one wave at study onset and
one wave after four years has almost identical precision to a study
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Developmental Cognitive Neuroscience 70 (2024) 101450 
Fig. 2. Precision of slope estimates as a function of time and number of measurement time points. The two-time point and three-time point models have almost identical precision.
esign in which there are yearly waves over four years. This suggests
hat two-time point models can be useful for understanding individual
ifferences in linear slopes when we deviate from the default longitudi-
al design of annual observations. Here we refer to annual observations
iven the wide prevalence of this approach in developmental research.
owever, in some applications, annual observations might represent
uite long ‘‘effective’’ study duration. In all cases, study duration needs
o be contextualized by the time course of the phenomenon of interest.

.2. Optimal design

Given an asymptotic result for the precision of a LCM or LCSM, we
hould ask ourselves: What is the optimal design to capture individual
ifferences in linear slopes (Brandmaier et al., 2015)? As argued earlier,
here are different possible metrics for assessing the precision of cap-
uring change depending on whether we would like to consider specific
hoices about sample size, significance level or not (see example #2 of
randmaier et al. 2018 for an illustration). For now, we focus on ECR
s a measure of reliability (assuming that sample size is fixed at some
etermined value and significance level also remains at a fixed value,
ay 𝛼 = 0.05).

Under simplified conditions, effective error asymptotically depends
n the variance of the time points, a result that was already found by
illett (1989). For example, in a five-wave linear LCM with equally

paced measurement intervals at 1 unit of time, the time points are
,1,2,3 and 4. The mean of the time points is 2 and the variance is
(0 − 2)2 + (1 − 2)2 + (2 − 2)2 + (3 − 2)2 + (4 − 2)2

)

∕5 = 2.5. The larger
his variance, the lower the effective error, the larger the reliability and
ence the larger the correlation of true scores and estimated scores.
hen is variance maximal and thus reliability optimal? Variance is

asymptotically) at its maximum if we assign the measurement occa-
ions equally to the study onset and study end. For example, if we could
fford six measurement occasions over three years, variance across
ime points is maximal if our time points are (0, 0, 0, 3, 3, 3), that is,
e measure three times in a row at the beginning of a study (say,

epeat the same MR sequence three times without removing the person
rom the scanner) and the same three times after three years, similar
o measurement burst designs (Stawski et al., 2015). As a consequence,
he six time-point model really converges to a two-time point latent
hange score model with multiple indicators. We can conclude that

inear change is measured best with two time points that are measured

4 
well. The geometric intuition behind this is that a line is defined by two
points and it is sufficient to measure these two points well (e.g., by
repeated measures very close in time). This means that the two-time
point latent change score model (with multiple indicators) has the
potential to be the optimal model for assessing individual differences in
linear slopes (if the model assumptions are correct!), whereas common
developmental designs, as assessed by Parsons and McCormick (2024),
represent the worst case for reliability in a two-time point model. In
practice, optimality is a function of resource needs and costs, which
can be formally included in considering optimal designs (Brandmaier
et al., 2015).

2.3. Considerations for optimizing two-time point models

While designs like the (0, 0, 0, 3, 3, 3) approach outlined above offer
the chance to maximize the reliability of two-time point models, there
are some potential considerations we need to be aware of. Here we
outline two: (1) the role of planned and unplanned missing data, and
(2)nonlinear functional forms.

2.3.1. Planned and unplanned missing designs
A particular challenge in the practical implementation of longitudi-

nal studies is the fact that not all participants can be measured at later
measurement occasions. The reasons are manifold. For example, later
measurements may be missing because people move, lose interest in the
study or can no longer participate in the study for other reasons. Typi-
cally, the likelihood of a person not returning increases with the length
of the study, and any such person with missing measurement points
naturally brings less information about their change. Therefore, when
considering optimal designs for change measurement, we are dealing
with two opposing forces. The longer we wait, the more accurately we
can measure individual differences in linear slopes, but the more likely
we are to lose subjects and thus power.

von Oertzen and Brandmaier (2013) have worked out the asymp-
totic effective error for observations missing completely at random. To
consider random attrition, they showed that one first computes effec-
tive error for each pattern of missing data (for example, the effective
error of a five wave design, in which the fourth occasion is missing,
another five wave design, in which the third occasion is missing,
and so on) and then computes the weighted harmonic mean of these

effective errors (see their Eq. (5)). Using this result, we can compute
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Fig. 3. Asymptotic effect of missing data on the precision of individual differences in linear slopes for study designs with fixed total study time (of four years) and varying number
of measurement occasions (𝑀).
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the asymptotic correlation of true scores and estimated scores based
on an assumed missing data mechanism. von Oertzen and Brandmaier
(2013) reported a return rate in the BASE study of about 83% per year.
That is, if 𝑁 participants are observed at study onset, after 𝑘 years,
we expect that 0.83𝑘 ⋅ 𝑁 participants are observed. In this example,
if there were 200 participants in the first wave, we expect that only
0.832 ⋅ 200 ≈ 137 participants return after two years. Fig. 3 illustrates
the asymptotic effects of attrition for different return rates for the model
of our previous example (again, assuming negligible intercept-slope-
covariance). We can see that under complete data, the two and three
time point models have identical precision, the three time point model
loses less precision under missing data because it can still use data
from people who returned in the middle of the study. Further, the more
waves in a study, the smaller the loss in precision due to high attrition
rates.

Brandmaier et al. (2020) used this result to show how, under
assumptions of random attrition, we can optimize precision of linear
latent growth models to detect individual differences in linear slopes
if we want to employ planned missing data designs, that is, the de-
liberate omission of entire waves for randomly selected participants.
This approach has the potential to save resources while guaranteeing
adequate statistical power.

2.3.2. Nonlinear trajectories
Another opposing force that complicates decisions of whether to

wait for longer intervals between measurement occasions is that the
asymptotic derivations of effective error and ECR we outline assume
that change is linear across these longer intervals. If change is nonlinear
in form,1 from a simple quadratic curve all the way up to highly
complex nonlinear functions (often modeled with generalized additive
models), then preferring long intervals between measurement occasions
runs the risk of missing those nonlinear patterns of change. While with
short measurement intervals, a linear functional form model (e.g., two-
time point LCS) can provide a local linear approximation of change,

1 Nonlinear forms can be fit using both truly nonlinear models (where
arameters can enter the equations in other ways than simple addition) or
inear parameter models which approximate nonlinear change, either through
ransformations (e.g., 1/age, McCormick et al., 2023) or linearization (Blozis,
004; e.g., Browne, 1993; McCormick, 2024).
 (

5 
at longer intervals, these models are likely to show more exaggerated
misfit to the underlying developmental process (even though the mis-
fit may still go unnoticed in practice and lead to erroneous model
selection, see Ghisletta et al., 2020). Fig. 4 displays the issue, where
a quadratic curve can be well approximated by nine linear pieces
(red), but increasingly long intervals between measurement occasions
degrades the ability to approximate the underlying parabolic shape of
change.

3. Conclusion

Using effective error and effective curve reliability, we show how
asymptotic results on the precision of linear growth curve models
can be used to assess their ability to recover individual differences in
linear slopes. This approach allows for comparing alternative longitu-
dinal study designs under the assumption of linear change, including
different number of time points, study duration, indicator reliability
and missing data mechanisms. Simulation studies still provide added
value when the asymptotic conditions are violated (e.g., small samples,
non-negligible intercept-slope correlation), distributional assumptions
are violated (non-normal responses), or missingness is non-random.
Future work is needed to derive asymptotic estimates for more general
cases, such as other shapes of change or medium-to-large intercept-
slope correlations. Here, however, we specifically used the asymptotic
results to show that the criticisms of the two-time point model by
Parsons and McCormick (2024) can be addressed by thoughtful al-
terations to how we design longitudinal investigations. Linear change
can be measured very well with only two measurement points if the
measurement instruments are reliable and enough time has passed for
individual differences in linear slopes to stand out from measurement
noise (Rogosa and Willett, 1983). Note that residual error variance
in a univariate LCM is the sum of two components, slope regression
residual variance and indicator error variance (Brandmaier et al., 2018).
lope regression residuals are due to possible misspecification errors
n the shape of change, and indicator errors capture measurement
rror in the observed variable at each occasion. To this end, it is
ighly recommended to use latent change score and latent curve models
ith multiple indicators to identify both variance sources and address
arious problems related to measurement errors in models of change
von Oertzen et al., 2010). Ultimately, linear models may be the wrong
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Fig. 4. Extending the interval between measurement occasions (1 year interval in red to 9 year interval in purple) can reduce the ability of lower time point models to approximate
nonlinear change. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
choice of model for changes over longer periods of time (Ghisletta et al.,
2020), given that the mechanisms that drive maturational, learning-
related, or senescent changes typically result in non-linear trajectories
at the individual level. If we are interested in veridically capturing
such changes, we need four time points or more (Ghisletta et al.,
2020; Parsons and McCormick, 2024). And in either the linear or
non-linear case, both the number of measurement occasions and the
time elapsing between measurement occasions will affect our ability
to capture individual differences in linear slopes. Then, a minimum of
four time points or more is required to model quadratic or exponential
trajectories. Still, one should pay attention to the differential effects
of time passing and measuring more often. In sum, we concur with
Parsons and McCormick (2024) that precise measurement is key to
longitudinal brain imaging studies and that existing studies may often
have limited precision. However, we would like to emphasize that
the low power in two time-point models observed in their simulations
is not an inherent limitation of the model itself but a sub-optimal
constellation of study properties as they occur in practice. Indeed, more
time points are better. But just waiting longer for individual differences
to develop further, may be even better.
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