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A B S T R A C T

Longitudinal data are becoming increasingly available in developmental neuroimaging. To maximize the
promise of this wealth of information on how biology, behavior, and cognition change over time, there is a
need to incorporate broad and rigorous training in longitudinal methods into the repertoire of developmental
neuroscientists. Fortunately, these models have an incredibly rich tradition in the broader developmental
sciences that we can draw from. Here, we provide a primer on longitudinal models, written in a beginner-
friendly (and slightly irreverent) manner, with a particular focus on selecting among different modeling
frameworks (e.g., multilevel versus latent curve models) to build the theoretical model of development a
researcher wishes to test. Our aims are three-fold: (1) lay out a heuristic framework for longitudinal model
selection, (2) build a repository of references that ground each model in its tradition of methodological
development and practical implementation with a focus on connecting researchers to resources outside
traditional neuroimaging journals, and (3) provide practical resources in the form of a codebook companion
demonstrating how to fit these models. These resources together aim to enhance training for the next
generation of developmental neuroscientists by providing a solid foundation for future forays into advanced
modeling applications.
1. Introduction

A variety of longitudinal methods exist to model the course, cause,
and consequences of repeated measures across time (Curran et al.,
2010). With the advent of large-scale longitudinal data in the field
of cognitive neuroscience, researchers are faced with choices as to
which method most closely reflects the theoretical model they wish
to apply to their data. While individual fields often have method-
ological preferences, these are often rooted more in tradition than a
careful comparison of the available options. Here, we survey a cross-
section of longitudinal modeling traditions, starting with a concep-
tual introduction to each method before considering broad theoretical
considerations that motivate model selection for testing a particular
theoretically-derived research hypothesis. Through this primer on lon-
gitudinal methods, we aim to equip researchers and trainees with a
principled approach for adjudicating between available models to best
address substantive theory. In other words, to help answer the question

∗ Corresponding author at: Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, United States.
E-mail address: e.m.mccormick@fsw.leidenuniv.nl (E.M. McCormick).

‘‘I have longitudinal data, now what do I do with it?’’ or alternatively, ‘‘I
plan to collect longitudinal data, which method should I propose in my
funding/planning proposal?’’ We also provide a central reference hub
for original empirical and methodological work to guide further reading
and training in the specifics of each methodology. In this first section,
we outline the aims and structure of this methodological primer and
give a general overview of longitudinal methods, before moving into
specific models. Two friendly reminders before we begin: (1) DON’T
PANIC, and (2) know where your towel is.

1.1. Aims and scope

In setting forth the scope of this primer, we first need to define
clear aims; both for what we hope to accomplish, and topics we will set
aside for future discussion. The potential topics related to longitudinal
data analysis can (and do) span entire courses, special issues, and
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books (Hedeker and Gibbons, 2006; Singer and Willett, 2003; Bollen
and Curran, 2006; Little, 2013; Grimm et al., 2016), necessitating some
limiting principles. We detail these aims and limits below.

Aim 1: To provide a decision-tree of criteria for selecting a given
method over alternatives when modeling longitudinal data. Many read-
ers will likely have heard of many (if not all) of the models detailed in
this primer, however, in-depth training in quantitative methodology is
often not available across multiple modeling frameworks for individual
researchers and trainees. As such, we provide specific contrasts of the
relative strengths, weaknesses, and potential equivalencies both within
and between methodologies, focusing on common decision-points in
substantive research. These considerations span all facets of the re-
search process, including study design, model parameterization, and
inferential support. As such, we seek to not only inform data analysis
choices, but the deliberative planning of future studies.

Aim 2: To provide reference to a wide variety of primary-source em-
pirical and methodological work from neuro-, behavioral, and quantita-
tive science. While the field of neuroscience has become an increasingly
interdisciplinary science (Pfeifer et al., 2018), there remains divides be-
tween cognitive neuroscience/neuroimaging and established literatures
in the fields of education, development, and applied statistics where
longitudinal methods originate. As such, we seek to both highlight
exemplary applications of longitudinal methods using neuroscientific
data and provide references to methodological papers which provide
further detail on specific methods and more-advanced applications that
may be of interest. A guiding principle here is accessibility, providing
an opportunity for the reader to become an informed user of these
methods without being overwhelmed by technical information.

Aim 3: To provide a resource of open-access data and code (imple-
mented primarily in R) for testing and training in longitudinal methods.
One key barrier to implementing the most appropriate longitudinal
method for a given substantive question is often understanding the
specifics of model parameterization, output organization, and interpre-
tation. While software comparisons are not the focus of this primer
(and often something we will explicitly avoid), some details of popular
software options may be relevant to the selection of a modeling ap-
proach. While theoretical discussion will largely guide the text of the
manuscript, worked examples and the associated code will be provided
in an online companion to this primer and referenced where relevant
for readers interested in the practical implementation of the models
discussed. Files needed to recreate the code companion are available
on the Open Science Framework (https://osf.io/bn6yu/).

Limiting Principles: We view this primer as an introduction to the
ecisions that researchers should expect to encounter when modeling
ongitudinal data. While we attempt to be thorough in our discussion
f individual methodologies, we by necessity cannot fully explore the
ounds of any one modeling approach. Additionally, while code and
orked examples are provided, we similarly cannot replicate formal

raining courses or specialized tutorials in the scope of a single re-
iew. Instead, we provide extensive documentation of primary-source
mpirical, tutorial, and quantitative work for additional reading (see
im 2). Some methods we will mostly avoid, either due to their rela-

ively infrequent use in neuroscience applications (e.g., growth mixture
odels), or due to well-known limitations (e.g., autoregressive panel
odels, repeated-measures ANOVA) that can be overcome with readily-

vailable modeling approaches. One major exception to this general
ationale is the case of intensive longitudinal models. These models
ave many exciting applications (Bolger and Laurenceau, 2013) but
iffer in important ways from the longitudinal methods discussed here,
nd so warrant dedicated treatment of their own.

.2. Longitudinal methods: What are they good for?

Longitudinal measures, or repeated observations gathered on the
ame individuals across time, represent a powerful framework for
2

nderstanding dynamic processes related to the brain and behavior
across the lifespan (McArdle, 2009; Sørensen et al., 2021a). Substantive
research using longitudinal designs with neuroimaging data span the
lifespan, from infant (Cusack et al., 2018; Wen et al., 2019) to aging
populations (Kuo et al., 2020; Miller et al., 2016), with a particular
focus on the peri-adolescent period (Casey et al., 2018; Mills et al.,
2016; Tamnes et al., 2018; Telzer et al., 2018; van Duijvenvoorde
et al., 2016). While traditional, annual-observation designs predom-
inate in the literature, longitudinal models are highly flexible and
can operate across many timescales, from across months or years to
over seconds or minutes (Bolger and Laurenceau, 2013; Hedeker and
Gibbons, 2006). Across all of these specifications, however, the focus is
on mapping within-unit (usually but not always within-person) change
across time (Curran et al., 2014; Curran and Bauer, 2011; Hamaker
et al., 2015) as distinct from between-person differences. While oft-
repeated, the benefits of longitudinal modeling over cross-sectional
approaches to the same theoretical questions are many (Becht and
Mills, 2020; Crone and Elzinga, 2015; Curran et al., 2010; Curran and
Bauer, 2011; Curran and Willoughby, 2003; King et al., 2018; Kraemer
et al., 2000; Louis et al., 1986; Maxwell and Cole, 2007; McCormick,
2021; Molenaar, 2004; Telzer et al., 2018), including increased power
to detect effects, the ability to model individual differences in both
average level and change over time, and the ability to separate effects
to the within- versus between-person level. While we will take these
advantages as a given (see Fig. 1, first ‘‘No’’ node), their reality has
spurred billions of dollars of investment in the types of data we have
come to regard as crucial for understanding how biological, cogni-
tive, social, and behavioral processes unfold across development. Here,
we will concern ourselves with theoretical and practical challenges
for maximizing the potential of such data, matching our selection of
longitudinal models to enable the best testing and refinement of our
developmental theories.

1.3. Roadmap

The remainder of the primer will take on the following form:
First, we will outline the model specifications for four frameworks
for longitudinal modeling (Section 2). Once we detail each framework
individually, we will then highlight the relative strengths and weakness
of each for a number of modeling considerations (Section 3), including
how time is included in the model 3.1, how to determine the optimal
functional form for the model 3.2, how to include covariates and distal
outcomes into models of change 3.3, and how to handle various forms
of nested data 3.4. Finally, we touch on how to use the principles
discussed here to inform future data collection. And so, without further
ado...

2. Modeling frameworks

To give us a shared language for discussing various longitudi-
nal models, we first need to introduce each of the four modeling
frameworks we will discuss, and outline how they are specified to
accommodate longitudinal data. These frameworks fall into two broad
categories, mixed-effects models and structural equation models,
which we will take in turn.

2.1. Mixed effects models

While there are a number of terms which can be used to refer
to the same class of nested data models (including ‘‘multilevel’’, ‘‘hi-
erarchical’’, and ‘‘mixed-effect’’), we will use ‘‘mixed-effects models’’
(MEMs) to refer to the broader group of models that use nested data
structures and will encompass more-specific methods. Under this MEM
umbrella, we will consider two modeling frameworks, the multilevel
(MLM) and generalized additive mixed model (GAMM). Both of these
modeling frameworks deal with just-identified models (similar to an

OLS regression), meaning that we lack the kinds of absolute model fit
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𝑦𝑡𝑖 = 𝛽0𝑖 + 𝛽1𝑖 𝑥𝑡𝑖 + 𝑟𝑡𝑖 (1)

repeated-measures outcome

intercept (where all predictors are 0)

effect of x

observed measure of time or growth

time-specific residual

Box I.
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ests that we will see in later SEM models. Instead, we need to rely on
elative fit indices like the AIC/BIC and likelihood ratio test to assess
he fit of a given model. Additional information on model comparisons
n MEMs can be found elsewhere (Hamaker et al., 2014; Pu and Niu,
006; Rights and Sterba, 2020; Stram and Lee, 1994; Vong et al., 2012).

.1.1. Multilevel models
Multilevel models are the first method for longitudinal analysis that

e consider here. Originating in the field of education (Raudenbush
nd Bryk, 2002), MLMs are some of the most common longitudinal
odels used in the field of cognitive neuroscience (Braams et al., 2015;
ampbell and Feinberg, 2009; Martin et al., 2019; McCormick, 2021;
cCormick et al., 2021; Peters et al., 2016; Peters and Crone, 2017;
elzer et al., 2018). Multilevel models were originally developed to
eal with the nesting of children within classrooms. Children within
lassrooms are likely to be systematically more similar to one another
han children across classrooms (or schools) because of a wide vari-
ty of potential shared characteristics or environments (e.g., school
emographics, teacher competency, etc.). This means that children
ithin a classroom do not contribute entirely unique information since

hey are not a truly random sample and child outcomes like school
chievement will be correlated within classrooms (i.e., some classrooms
erform higher than others). However, the same insight applies to
epeated measurements of the same individual over time (Raudenbush
nd Bryk, 2002). Some individuals are going to be systematically higher
r lower on an outcome (e.g., depression, dmPFC activation) over time
nd that induces correlations among each individual’s responses. Here
e discuss how the MLM is applied to longitudinal data in cognitive
euroscience, and the modeling decisions faced by the researcher. We
egin by defining model notation and other key terms, introduce the
onceptual framework of longitudinal data analysis in MLMs, and then
ove into specific features that would inform model choice.

.1.1.1. Model specification. Model Equations: As the name implies, the
ultilevel model is designed to model data at more than one level,
eaning that we have multiple units of measurement that are nested
ithin one another. In longitudinal models, we typically1 think of

wo levels, time (level 1) nested within person (level 2). Variables
t level 1 are time-specific observation (i.e., our repeated measures:
nternalizing, cortical thickness) while variables at level 2 are person-
evel characteristics that do not vary across time (e.g., biological sex,
reatment group). For a simple model with a linear effect of time, we
an borrow notation from Curran and Bauer (2011) to express the
epeated-measures outcome (𝑦𝑡𝑖) for person (𝑖) at time (or occasion;
) as a function of the predictors in the following level 1 equation
note that the colors have no intrinsic meaning; they only provide a
isual reference) (see Eq. 1 that is given in Box I). Where 𝛽0𝑖 is the
andom intercept and 𝛽1𝑖 is the random slope for each individual (𝑖).
ur predictor 𝑥𝑡𝑖 is the observed value of the time-related variable2

1 MLMs allow for more complex types of nesting, however, we focus on
hose common in longitudinal models here.

2 For now, we will use ‘‘time’’ as a stand-in for any developmental process
hat we might use as a predictor in a longitudinal model. This could be
omething intuitive and simple like age or wave of assessment, or more
bstract — such as maturation as indexed through pubertal status. Especially
n MEMs, we have a lot of flexibility about what ‘‘time’’ is. See our discussion
3

ere (Section 3.1.4.1) for more details. l
or each measurement occasion and an individual and time-specific
rror term (𝑟𝑡𝑖) is included to capture the unexplained variance in
he outcome. We assume that these residuals are normally-distributed
ith a mean of zero and a variance of 𝜎2 — in notation form this

s 𝑟𝑡𝑖 ∼ N (0, 𝜎2). At level 2 (i.e., the person level), we can write our
andom intercept and slope as a function of an average (i.e., fixed) and
ndividual (i.e., random) effect.3 Here we can see this as:

𝛽0𝑖 = 𝛾00 + 𝑢0𝑖

𝛽1𝑖 = 𝛾10 + 𝑢1𝑖
(2)

from Equation 1 fixed effects

random effects

Where 𝛾00 and 𝛾10 are the fixed (or average) effect pooling across
ndividuals and the 𝑢0𝑖 and 𝑢1𝑖 terms capture the individual-specific
i.e., random) deviations4 from that fixed effect. These random effect
erms imply that individuals can have higher or lower overall levels of
he outcome where time is coded as 0 (i.e., the random intercept, 𝑢0𝑖;
ften at the initial time point) and that individuals can show different
agnitudes of change over time in the outcome (i.e., the random slope,

1𝑖). These level 2 equations can be substituted into level 1 (which is
ow the model is actually implemented; level 1 and 2 are a conceptual
ool) to give us:

𝑦𝑡𝑖 = 𝛾00 + γ10𝑥𝑡𝑖
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
fixed effects

+ 𝑢0𝑖 + 𝑢1𝑖𝑥𝑡𝑖
⏟⏞⏞⏞⏟⏞⏞⏞⏟

random effects

+𝑟𝑡𝑖 (3)

Where the fixed (𝛾 ’s) terms represent the average intercept and slope
and the random (𝑢) terms model individual deviations from the fixed
effects. One key assumption of the standard MLM is that the random
effects are (multivariate) normally distributed. In a model with multiple
random effects, we denote this by u ∼ N ([0,T]) where u is the vector of
random effects and T is the covariance matrix of the random effects. We
can express this in matrix form below (note that we only fill in elements
on the lower triangle for clarity, but the T matrix is symmetric) (see Eq.
4 that is given in Box II).

In addition to the variances of the random intercept (𝜏00) and
random slope (𝜏11), we can estimate the covariance between the ran-
dom effects (𝜏10). This covariance captures dependence between the
intercept (often starting point) and the slope (rate of change over time)
across individuals. For instance, perhaps individuals who show lower
initial levels show greater increases over time.

One important thing to point out here is that individual scores
for the random effect are not estimated as part of the model, only
the variances and covariances of the distributions are parameters; the
individual deviations from the fixed effects must be computed on the
back-end using model-implied information (we will discuss this later).

3 Note that while the model does not require us to have a random slope,
t is relatively uncommon to only have a fixed slope in longitudinal models.

4 This might sound like a residual, which is exactly what it is. Typically,
e reserve ‘‘residual’’ for the level 1 deviation, and ‘‘random effects’’ for the

evel 2 deviations.
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⎠

(4)

Normal (Gaussian) distribution

the means are assumed to be zero

variances of the random effects

covariance between the random effects

Box II.
𝑦𝑡𝑖 = 𝛾00 + 𝑓 (𝑥𝑡𝑖) + 𝑢0𝑖 + 𝑟𝑡𝑖 (5)

generic notation for an unknown functional form

Box III.
o
s
w
b
2

hen our sample size is sufficient5 (McNeish, 2017; McNeish and
tapleton, 2016) and the level 2 unit is the individual, this normality
ssumption is reasonable. However, some units of nesting, most notably
ndividual sites in multi-site studies like ABCD, likely do not meet the
heoretical assumptions for a random effect (McNeish et al., 2017) and
nstead should be modeled using fixed effects approaches (McNeish and
elley, 2019) where dummy codes for each site are included as separate
redictors in the model (for a discussion of the relative trade-offs,
ee Feaster et al. (2011).
Residual Structure: One quirk of the multilevel model is that by

efault, residuals are assumed to be homoscedastic. In other words, the
odel obtains a single estimate for the residual variance across all time
oints. This assumption can be relaxed and heteroscedastic residuals
i.e., different estimates for each time point) can then be obtained.
ost major software implementations of MLMs can accommodate het-

roscedastic residuals, with the notable exception of lme4 in R (nlme
an be used instead).

.1.1.2. Further reading. Many variations and additional considera-
ions for model specification and estimation exist in the MLM, but this
verview orients us to the basics and allows us to move on to additional
odel features. For those interested in more in-depth explications of the
odel, details can be found here (Curran and Bauer, 2011; McNeish

t al., 2017; Raudenbush and Bryk, 2002; Singer and Willett, 2003).
ode for fitting initial MLMs can be found in the Canonical Models
hapter of the codebook.

.1.2. Generalized additive mixed models

.1.2.1. Model specification. Generalized additive mixed models
GAMMs) share a basic model expression with MLMs. However, rather
han modeling the linear effect of predictors (like time), GAMMs allow
or the modeling of complex non-linearities in trends over time through
he summation of smooth functions. We can see this in equation form
n Box III.

Note that instead of a single 𝛾 estimate for the effect of 𝑥𝑡𝑖 on 𝑦𝑡𝑖,
here is a generalized function, 𝑓 (), describing the effect (Hastie and
ibshirani, 1987; Lin and Zhang, 1999). We have a lot of flexibility in
ow we compute this overall function but the general idea is that we
enerate a set of known functions (e.g., cubic or b-spline functions; Eil-
rs and Marx, 1996; Wood, 2003) across the range of the predictor and
hen compute estimates of the effect of each function on the outcome
cross a given set of values within the full range, separated by knot
oints (for an excellent visual representation of this process, see here).
he upshot of this approach is that we can estimate a very complex

5 A delightfully vague standard as ‘‘sufficient’’ is impacted by many
onsiderations (e.g., model complexity, higher order nesting, etc.).
4

verall trajectory that has no known mathematical expression as the
um of a set of known functions. In the longitudinal context, this means
e can estimate trajectories in outcomes that show complex transitions
etween increases, decreases, and plateaus across time (Sørensen et al.,
021a,b). However, you might have noticed that we are missing 𝑢1𝑖

(the random effect of 𝑥𝑡𝑖) in the equation above. While including a
random slope of time is not impossible in theory, it is often not possible
in practice for longitudinal studies where the number of observations
per person is reasonably small. Compared to other methods we will
discuss, GAMMs need a larger range of 𝑥 values (most commonly age)
to estimate the splines over. While in high-density data (e.g., intensive
longitudinal data, or some rare traditional longitudinal studies with
many time points; Lambert et al., 2001; Sullivan et al., 2015), this
can be accomplished within-person, it is likely to be more common in
developmental cognitive neuroscience settings to see GAMMs applied in
accelerated longitudinal contexts where any individual is only sampled
across a small range of possible age values, but different individuals
are sample over different sections of the overall age range. This makes
GAMMs ideal for lifespan data, where a study might cover multiple
decades of life but any one individual is only assessed two or three
times (Sørensen et al., 2021a). We will discuss this further in our
discussion regarding determining the shapes of trajectories.

One final point regarding model specification to address is that
while GAMMs are characterized by these predictor functions, we are
not obliged to use a smooth function for every predictor. We can
include a mix of smooth and linear predictors in the same model
without issue. Conversely, we can include smooths of compound pre-
dictors like interactions where different levels of a moderator variable
lead to different smooths on our 𝑥 variable (see supplemental material
in McCormick et al. (2021) for an example in the longitudinal context).
We will return to these points in our discussion of predictors and
outcomes later.

2.1.2.2. Knot points, ‘‘wiggliness’’, and overfitting. One key concern with
GAMM spline functions is the degree of flexibility we allow in the
functional form. Flexibility can be introduced in several ways, including
increasing the number of knot points which increases the number of
splines being fit, the choice of spline (e.g., cubic versus b-spline),
and the degree of ‘‘wiggliness’’ allowed. The first perhaps is the most
obvious — increasing the number of non-linear functions fit to the data
by including additional knot points will naturally improve the GAMM’s
ability to reproduce the average trajectory in the data by fitting unique
functions to increasingly local features. The choice of splines is a more
complex consideration (for a more in-depth treatment of spline options,
see Perperoglou et al. (2019)), but in general, higher-order splines
(e.g., b-splines) will increase the flexibility of the GAMM trajectory

compared to polynomial splines (e.g., linear or cubic). Finally, the
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‘‘wiggliness’’6 of the function is a squared measure of the second
derivative — or how much change occurs in the slope of the tangent
line (i.e., the first derivative) across different values of the predictor.
Functions with more wiggliness will have a greater ability to fit to the
data, whereas low wiggliness will smooth over local features in the
data (a true line being the least wiggly function). The wiggliness of the
function is optimized with penalization as a part of the model fitting to
try to reduce function complexity (Wood, 2004, 2011).

It is easy to see that GAMMs have a high degree of flexibility
in fitting the functional form of our data; however, we do need to
be concerned that this flexibility will lead to a higher propensity for
our model to overfit the sample data. GAMMs straddle the (fuzzy)
line between explanatory models like the others we consider here
and predictive machine learning models. As such, approaches like
cross-validation and sensitivity analysis are especially important with
GAMMs to enhance their external validity and generalizability to the
population. We will discuss these tradeoffs in greater detail when
considering how to establish trajectory shapes.

2.1.2.3. Further reading. Generalized additive models are relatively
new for the neurobiological and behavioral sciences, but they have a
wide range of uses that may be of interest. Further information can
be found here for those interested in practical (Sørensen et al., 2021a;
Sullivan et al., 2015) and advanced (Berhane and Tibshirani, 1998;
Bringmann et al., 2017; Sørensen et al., 2021b) applications (see the
Canonical Models chapter for code examples).

2.2. Structural equation models

Like with MEMs, we will use the term ‘‘structural equation model’’
(SEM) to refer to a broad class of models, including latent curve (LCM)
and latent change score (LCSM) models. Of course, SEMs encompass
still other forms of models (both longitudinal and otherwise), includ-
ing autoregressive cross-lag panel models (ARCLs), path models, and
growth mixture models (GMMs), among others. We will focus on the
LCM and LCSM classes of models for this primer rather than these other
models, due to a general lack of use in cognitive neuroscience settings
(path models and GMMs) or because of known methodological or infer-
ential limitations (e.g., ARCLs; see Curran et al. (2014), Hamaker et al.
(2015)). Developmental cognitive neuroscience has generally adopted
SEM to a lesser extent than MEMs, with the exception of studies in
aging. However, SEM approaches are used extensively for modeling
longitudinal data in the broader social and behavioral sciences (Bollen
and Curran, 2006; King et al., 2018; McArdle, 2009) and there is
increasing interest in applying SEM tools to questions in neuroscience
contexts.

While we have mentioned previously that MEMs (and especially
MLMs) are specialized latent variable models and could fall under the
general SEM umbrella (Bauer, 2003; Curran, 2003), there are conven-
tions that tend to differ between SEMs and MEMs due to their historical
prevalence/development in different fields. In general, SEMs focus not
only on relative fit (e.g., likelihood ratios, AIC/BIC comparisons) but
also on measures of ‘‘eristics (means and covariances) of the observed
(unstructured) data (Bollen et al., 2014; Bollen and Stine, 1992; Hu
and Bentler, 1998; Jackson et al., 2009; McNeish and Wolf, 2021;
Satorra and Bentler, 2001; Widaman and Thompson, 2003). Further-
more, SEMs are inherently a multivariate modeling framework (even
when modeling a single construct; more on this later) and naturally
extend to multiple outcomes. In contrast, MEMs are capable of mod-
eling multivariate outcomes (Curran et al., 2023) but only through a
data-management/modeling trick that can be challenging to implement
appropriately.

6 Who says math cannot be whimsical?
5

w

2.2.1. Latent curve models
Latent curve models are a class of SEMs that have their origin in

confirmatory factor analysis (CFA; Meredith and Tisak, 1990). In CFA,
indicators of a construct are used to estimate an underlying latent factor
through their shared variance, while isolating item7-specific variance
that is not shared to the individual item error variance (for an overview
of CFA methodology, see Bollen (1989), pp. 227–318). However, an
incredibly keen insight came when Meredith and Tisak (1990) used the
CFA framework in a highly constrained fashion to allow for estimation
of an underlying trajectory in longitudinal data. Now instead of shared
variance among a set of items, the latent variables represent features of
the longitudinal trajectory (e.g., intercept, linear slope, etc.). We will
show how this is achieved below.

2.2.1.1. Model specification. In a confirmatory factor model, we can
model multiple (𝑝) items (𝑦𝑝𝑖) as a function of the item intercepts (𝜈𝑝)
and the weighted (Λ; the factor loading matrix) contribution of the
latent construct (𝜂𝑖). We can see this below (note we do not include
color in this equation because it is not a growth model...yet):

y𝑝𝑖 = 𝛎𝑝 + Λ 𝛈𝑖 + 𝛆𝑝𝑖 (6)

ndividual observed items

item intercepts

factor loading matrix

latent factor(s)

item residuals

Here the elements of Λ (Lambda; i.e., the effect of the latent con-
truct on the individual item) are freely-estimated parameters (Bollen,
989). We would represent a factor loading matrix for four items as
ollows:

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜆1
𝜆2
𝜆3
𝜆4

⎤

⎥

⎥

⎥

⎥

⎦

(7)

n the latent curve model, by contrast, we can model repeated measures
f the same item or construct (𝑦𝑡𝑖) using a modified form of Eq. (6)
again the colors are just a visual guide, but note that we try to display
nalogous parameters to the MEMs in the same colors as before) (see
quation given in Box IV).

In the LCM, we do not estimate intercepts (𝜈) of the repeated
easures, but instead attempt to reproduce the mean structure – and

hanges in means over time – through the latent factor and factor
oadings (which we will discuss in greater detail below). Furthermore,
nstead of freely estimating the elements of the factor loading matrix
e.g., 𝜆1), we fix them to particular values to determine the identity
f the latent factor (Meredith and Tisak, 1990). So, for a linear slope
odel, our factor loading matrix would have the form:

=

⎡

⎢

⎢

⎢

⎢

⎣

1 0
1 1
1 2
1 3

⎤

⎥

⎥

⎥

⎥

⎦

(9)

he first column of 1’s specifies the first factor (𝜂1) as an intercept
hile the linearly increasing integers in the second column specifies the

econd factor (𝜂2) as the linear effect of time on the outcome. Where we
hoose to place the zero in the second column will impact the estimate
f the intercept (more on this in our discussion of centering), but it is
ypical to place zero at the initial time point to estimate the intercept as
he starting level in the growth model (Bollen and Curran, 2006). Each

7 In SEM terminology, items are often called ‘‘indicators’’ of the latent
ariable, but we will retain ‘‘item’’ here for readers who may be less familiar
ith these conventions.
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y𝑡𝑖 = Λ 𝛈𝑖 + 𝛆𝑡𝑖 (8)

observed repeated measures

factor loading matrix (contains values of time)

latent growth factor(s)

time-specific residuals

Box IV.
𝛈𝑖 = 𝛂 + 𝛇𝑖 (10)

from Equation 8 factor means (fixed effects)

factor variances (random effects)
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atent factor (𝜂𝑖) can be characterized by two parameters, the factor
ntercept (𝛼)8 and disturbance (𝜁𝑖)9; we can see this in Box V.

The (co)variance matrix of the disturbances (Psi; Ψ) allows us to
odel individual variation around the mean of the factors (𝛂). For the

inear slope model, this is a 4 × 4 matrix:

Ψ =

[

𝜓11

𝜓21 𝜓22

]

(11)

ariance-covariance matrix
variances of the latent factors

factor covariance

Where 𝜓11 is the variance of the intercept factor, 𝜓22 is the variance
f the slope factor, and 𝜓21 is the covariance between the intercept
nd slope. If all of this seems familiar, this formulation of the LCM
ives us the ability to model fixed (i.e., the intercept of the factor,
) and random (i.e., the variance of the disturbance, 𝜓𝑖𝑖) effects just
ike in the MLM (see Eq. (4)). In fact, for a broad class of simple
ongitudinal models, MLMs and LCMs are numerically identical (Bauer,
003; Curran, 2003).

One very interesting conceptual insight that SEM can provide is
n understanding of how the model reproduces the characteristics of
he observed data. The model implied covariance matrix (Σ(𝛉)) of the
epeated measures is modeled as a function of the factor loading matrix
Λ) and factor covariance matrix (Ψ), with the residual matrix (Θ)10

ccounting for the residual (co)variances (Jöreskog, 1969, 1970). We
an see this in the elegant expression (Bollen, 1989, pp. 85–88, works
hrough the algebraic steps to arrive at these equations in a very clear
nd accessible fashion):

(𝛉) = ΛΨΛ′ +Θ (12)

s mentioned previously, the means of the items are reproduced com-
letely through the factor structure and individual item intercepts are
ot estimated. The simple expression for the means is as follows:

(𝛉) = Λ𝛂 (13)

here the intercepts (i.e., fixed effects) of the latent factors (𝛂) are
ultiplied by the factor loading matrix (Λ) to give the model-implied
eans (μ(𝛉)). When assessing model fit, we compare the estimated
odel-implied moments (i.e., means and covariances) to the observed
oments. Models that fit well will show small discrepancies, while

8 We need to distinguish between the intercept of a factor (an unconditional
r conditional mean depending on the model, denoted by 𝛼) and the factor that
epresents the intercept of the trajectory (typically denoted by 𝜂1).

9 Yes, we have in fact introduced another term for a residual. Welcome.
10 Lowercase theta (𝛉) represents the vector of model parameters while
ppercase theta (Θ) represents the residual covariance matrix (blame the
6

reek alphabet for not having more characters). c
hose that fit poorly will do a bad job of reproducing the observed
haracteristics of the sample data11 (Hu and Bentler, 1998; Jackson
t al., 2009; McNeish and Wolf, 2021).
Residual Structure. In contrast to MEMs, where the default residual

tructure is homoscedasticity (i.e., a single residual estimate over all
ime points), the LCM defaults to heteroscedasticity (i.e., a unique
esidual estimate for each time point). This highlights the truly mul-
ivariate nature of the SEM compared with the MEM framework, as
ach repeated measure is represented as a different variable in the
ata frame (i.e., the wide format; e.g., Hamaker and Muthén (2020)).
f course, it is trivial to constrain residuals to be equal across time
oints in the LCM and then compare the two model fits to test (hetero-
s. homoscedasticity) whether the simplification significantly decreases
verall model fit using a likelihood ratio test (see the Residual Estimates
ection of the codebook for how this is done in practice).

.2.1.2. Further reading. While relatively uncommon in the neuro-
cience fields, LCMs have been extensively developed and applied in
ther developmental and aging-related fields. For those interested,
heoretical (Biesanz et al., 2004; Bollen and Curran, 2006; Hancock
t al., 2001; Hancock and Choi, 2006; Marcoulides, 2018; McArdle,
009; Meredith and Tisak, 1990; Preacher and Hancock, 2015) and
ractical applications (Curran et al., 2010; Harden and Tucker-Drob,
011; King et al., 2018; Moustafa et al., 2021-02-15; Parsons and
cCormick, 2022) exist to model many different longitudinal processes

hat may be of interest (see the Canonical Models chapter of the
odebook for examples).

.2.2. Latent change score models
Latent change scores models are another form of SEMs that, while

nfrequent in the current developmental cognitive neuroscience litera-
ure, have attracted recent attention (Kievit et al., 2018) especially in
he context of data with relatively few repeated measures. Interestingly,
any longitudinal models (e.g., ARCLs, LCMs) can be reformulated

s latent change scores models (for details see Serang et al., 2019).
he LCS framework can be expanded quite extensively (Grimm et al.,
012; McArdle, 2009) but we will cover the basic structure here before
ointing towards more advanced applications.

.2.2.1. Model equations. To understand latent change scores, we need
o step back and think about where the scores we observe come from
for an excellent review of Classical Test theory, see Bollen (1989),
p. 206–222). Any given observed score (think a behavioral perfor-
ance metric or a questionnaire response) is composed of ‘‘true’’ score
hich reflects actual status on that measure and ‘‘unique’’ or ‘‘error’’

11 This is an incredibly over-simplified treatment of model fit, the relevant
itations go into much greater detail.
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variance that can come from a variety of sources (item peculiarities,
imprecision, etc.). This can be expressed algebraically as:

𝑦𝑡,𝑜𝑏𝑠 = 𝑦𝑡,𝑡𝑟𝑢𝑒 + 𝜀 (14)

At the level of true score, the score at any observation can be expressed
as a function of a prior time point’s true score and the change in true
score between that time point and the current one12:

𝑦𝑡 = 𝑦𝑡−1 + 𝛥𝑦𝑡,𝑡−1 (15)

Rearranging Eq. (15) allows us then to express the difference in true
score as:

𝛥𝑦𝑡,𝑡−1 = 𝑦𝑡 − 𝑦𝑡−1 (16)

So if we fix the effect of 𝑦𝑡−1 on 𝑦𝑡 (i.e., the autoregressive effect) to
a path weight of 1, we can model the residual of 𝑦𝑡 as a latent differ-
ence factor (𝛥𝑦𝑡,𝑡−1) that absorbs any changes in true score between
observations (for a more thorough walkthrough of these equations,
see Ghisletta and McArdle, 2012). When we string together a number
of these time-adjacent difference scores, we can then sum (i.e., factor
loadings with 𝜆 = 1) across the latent difference factors to build

true score trajectory model with an intercept and slope (if this
ounds like the LCM, it should). In addition to this overall trajectory
odel, we can include a proportionality parameter (often denoted 𝛽)

hat allows us to model the latent difference factor as a function of
rior status (𝛥𝑦𝑡,𝑡−1 ∼ 𝛽 ∗ 𝑦𝑡−1). This proportionality effect is one
f the more unique features of the latent change score framework
which encompasses many specific versions of the model) and allows
or modeling non-linearities in developmental trajectories by inducing
xponential trends (Ghisletta and McArdle, 2012; Grimm et al., 2012,
013; McArdle, 2009). The inclusion of this proportionality effect is
hy these models are sometimes referred to as ‘‘dual-change’’ models

i.e., the effect of the overall slope and of prior status on latent change).
This basic set of equations can be expanded in many interesting ways
which are detailed in the advanced topics references (Section 2.2.2.4),
but since we focus on the most commonly used version of the model
(e.g., Kievit et al., 2018), understanding the basic ideas of the latent
and dual change is sufficient for our purposes here.

2.2.2.2. LCSMs and other longitudinal models. As we have mentioned,
the LCSM framework can subsume other longitudinal models (see Us-
ami et al. (2019) for a good overview of how many of these longitudinal
models interrelate). For instance, significant interest in LCSMs for two-
time point data has been generated by the availability of the second
wave of ABCD brain data (Henk and Castro-Schilo, 2016; Kievit et al.,
2018). LCSMs might seem to be an attractive option in this context
(but see Parsons and McCormick, 2022) since we could in theory take
advantage of full information maximum likelihood (FIML) to retain
cases with missing observations. While this is true to an extent, FIML
cannot generate data that does not exist. This means that individuals
with only a single observation will contribute to features like the inter-
cept/variance of estimates at those time points but will not contribute
to the latent difference factor. Indeed, if we were primarily interested
in the mean of the latent difference factor (and since this is the effect
of time, it is often what is of interest), then that parameter will be
identical to a paired-samples t-test. Likewise, the ARCL and LCM can
be re-expressed as LCSMs (Grimm et al., 2012) and parameters will
be numerically identical.13 For the basic versions of these models, the
LCSM would be somewhat of an exercise in over-engineering when
simpler expressions exist; however, the LCSM expression allows for
the inclusion of proportionality effects which cannot be found in the
simpler expressions of these models. If the dependence of change on
prior status is of interest, then the LCSM is ideal for testing those
hypotheses.

12 These definitions may seem trivial, but bear with us; this enables us to
o some cool things with the LCSM.
13 We emphasize this to highlight that they are not ‘‘similar’’ or ‘‘close
nough’’ but literally indistinguishable.
7

2.2.2.3. Measurement error and phantom variables. One peculiarity abou
the LCSM is that despite the use of latent variable language, LCSMs
at their simplest utilize a form of latent variables that differ from
more traditional SEM applications. One of the advantages of latent
variables is their ability to distinguish between common and unique
(or measurement) variance (Bollen, 2002) in a set of 𝑝 items. In these
models, the latent variable is theoretically purged of measurement
error and represents a true score that gives rise to the set of items.
However, in LCSMs, we can model ‘‘latent change’’ using a single
observed variable. In typical applications, this latent variable would
be undefined, and so in the LCSM, these single-item factors are often
referred to as ‘‘phantom’’ variables, which are essentially a software
trick that allows us to model the ‘‘residual’’14 of an item and use it as
a predictor or outcome. This trick is accomplished by not estimating
an intercept or residual of the item itself and then defining a phantom
variable with a loading of 1 so that it copies the parameters of the
item up into the phantom. In this context, we cannot really say that
the phantom has been purged of measurement error in the same way
that we do with multi-item factors. However, if we wish to incorporate
this strength of SEMs, we can replace the phantom with a true latent
factor, with an associated measurement model (Ferrer et al., 2008), and
model latent change on the construct instead of the item level.

2.2.2.4. Further reading. While likely the least familiar to readers from
the neurosciences, latent change score models are a broad framework
that incorporate and extend many traditional longitudinal applica-
tions. Those interested in further details should reference quantita-
tive (Grimm, 2012; Grimm et al., 2012; McArdle, 2009; McArdle et al.,
2009; Ram and Grimm, 2007; Usami et al., 2019) and substantive (Fer-
rer et al., 2007; McArdle and Prindle, 2008; Selig and Preacher, 2009)
work using these models (see the Canonical Models chapter for code
examples).

3. Modeling considerations

Now that we have outlined the four modeling frameworks we
will consider here, we can now begin to compare and contrast how
they each handle key features of longitudinal data and analysis. We
will highlight four broad modeling considerations (with several sub-
components): (1) how time is encoded into the model 3.1, (2) how to
determine the optimal shape of the developmental trajectory 3.2, (3)
how to include covariates (i.e., predictors) and distal outcomes into
longitudinal models 3.3, and (4) how nesting is accommodated within
each model framework 3.4.

3.1. Time structure

A longitudinal model is inherently structured by time (whether or
not time is explicitly included in the model) as observations are ordered
by their location in the temporal design. However, time structure in
longitudinal studies can take many different forms. As is often the case
with terminology in the quantitative literature, there is some ambiguity
and disagreement about terms. We will attempt to create a logically
consistent taxonomy here and elsewhere that we hope can structure
the conversation in a useful way. One thing to note is that there may
be a distinction between the sampling design used in collecting data
and the time coding within a model. We note some discrepancies in
these two that might arise in common modeling applications.

3.1.1. Consistent and inconsistent assessment schedules
Before we can run any longitudinal model, we must first collect

longitudinal data. How we go about this data collection will constrain
many of the downstream modeling options, and researchers should

14 Here we put residual in quotes because it has all the properties of the
original variable which is uncommon for a residual in other contexts.

https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model
https://e-m-mccormick.github.io/static/longitudinal-primer/02-canonical.html#latent-change-score-model


Developmental Cognitive Neuroscience 63 (2023) 101281E.M. McCormick et al.

i

p

w
a
p

carefully consider the relevant alternatives with reference to their
theoretical question. It is far easier to address these issues at the front-
end, rather than working around them in the analysis stage. Here we
will largely discuss sampling designs with respect to the age of the par-
ticipants under study. This approach is almost universal in longitudinal
designs, however it is important to highlight that these principles could
apply to any metric of time — and indeed creative applications are an
area ripe for intellectual development in longitudinal modeling.

The most basic design is a cohort study where individuals are
assessed repeatedly on the exact15 same schedule (see here for a visu-
alization of this kind of design). A classic example would be to assess
a class of children across grades; each child is assessed at 6th, 7th,
8th, and 9th grade.16 This is the most consistent type of assessment
schedule; however, it is often more a function of the modeling approach
than a true reflection of a sampling design (since observing everyone
at the exact same time is often unrealistic). Here we could code
time as 𝑡 = 0, 1, 2, 3 and that would reflect organizing our repeated
measures by grade. Of course, individuals might vary in their exact
age within a given age category, which we will return to presently.
True cohort models benefit from relatively high power due to the
pooling of the full sample’s information at each time point and have
been used extensively in prior research (e.g., National Longitudinal
Survey of Youth, Longitudinal Survey of Australian Youth, Adolescent
Brain and Cognitive Development Study). However, these features also
impose some limitations for a cohort model, including often being more
restricted in overall temporal range (due to practical challenges for
observing a full sample across many occasions), confounding of de-
velopmental and retest effects (Ferrer et al., 2004; McCormick, 2021),
and the assumption that any deviations from the consistent assessment
schedule (e.g., age heterogeneity in a study organized by grade) are
uninformative noise.

A less consistent version of the cohort design is the cohort-sequential
(or multi-cohort) approach (visualized here). In these designs, re-
searchers implement a discrete set of assessment schedules for different
cohorts of subjects. To return to the above example, perhaps half of
the sample is assessed annually from 6th–8th grade while the other
half is assessed from 7th–9th. The advantage here is obvious; we can
expand the grade range of the study without observing any more
individuals or extending the duration of the study. Of course, this
is just one example of such a design and there is a great degree of
flexibility in the degree of overlap between the different assessment
schedules (see Anderson (1993), Curran and Bauer (2011), Duncan
et al. (2006), Yang et al. (2021) for some examples; see Curran et al.
(2008), Curran and Hussong (2009) for pooling data across longitudinal
studies in this way), but the common feature is that no one individual
need be observed across the entire grade range to make inferences
across a longer span of time. The time points for a given individual
not observed are an example of planned missingness (Little et al.,
2014) and can be modeled within a maximum likelihood or Bayesian
estimation framework to make use of all available observations and
yield unbiased17 estimates (Jia et al., 2014; Little and Rhemtulla, 2013;
Rhemtulla and Hancock, 2016). For a cohort-sequential design, we still
model discrete time points (e.g., grade 6, 7, etc.), which improves the
power of estimates for those time points compared with truly incon-
sistent assessment schedules. However, because not every individual

15 The degree to which this reflects the reality of the observation schedule
s a function of recruitment and scheduling.
16 Of course, the reader can likely already see an alternative way to
arameterize time in such a study, but we will return to this in a moment.
17 Planned missingness is a form of Missing Completely at Random (MCAR)
hich is the super-duper special form of the Missing at Random (MAR)
ssumption needed for unbiased model estimation. This of course does not
reclude other, more pernicious, forms of missingness that will bias model
8

estimation.
shares the same assessment schedule, we can potentially test for non-
developmental effects (e.g., cohort or retest effects) depending on the
exact nature of the sampling design (Costa and McCrae, 1982; Ferrer
et al., 2004; McCormick, 2021; Sørensen et al., 2021a). This schedule
occupies a nice middle ground between the strict cohort design and the
(potentially) completely inconsistent accelerated longitudinal design
which we will turn to next.

The accelerated longitudinal design is one in which no two indi-
viduals need to share the same assessment schedule (see here for an
example). The most common form of this design is when we model
repeated measures as a function of individuals’ precise chronological
age (Braams et al., 2015; McCormick et al., 2021; Mehta and Neale,
2005; Mills et al., 2016; Peters and Crone, 2017; Sørensen et al., 2021a;
Zhou et al., 2015). In our example, we could model individual re-
sponses as a function of age instead of grade, which would actually give
a uniform distribution of assessment timing within grade (since the old-
est in one grade would be only days younger than the youngest in the
next grade). However, in this example, the age range is not extended,
merely the density of time points is increased due to the individually-
varying assessment schedules (some individuals are assessed at 𝑡 =
12.1, 13.1, 14.1, while others are assessed at 𝑡 = 12.67, 13.67, 14.67, etc.).
However, a common application of the accelerated longitudinal design
is to expand the age range under consideration to an even greater
extent than is possible with the cohort-sequential design. For instance,
we might be able to sample from ages 8–29 over a 5-year study
period (Braams et al., 2015; McCormick et al., 2021; Peters and Crone,
2017) using such a design. The flexibility of the accelerated approach
is naturally attractive; however, this design introduces the greatest
divergence of the longitudinal models we might consider fitting as
the manner in which the different models incorporate time becomes
relevant. However, one additional limitation of this sort of assessment
schedule design is that the estimate of the effect at any given age
is markedly reduced (and indeed not directly estimated) because we
cannot pool information across individuals. Additionally, accelerated
longitudinal studies almost always have lower sample density towards
the tails of the age distribution, making model results potentially
sensitive to small number of observations at these tails.

3.1.2. Time coding
Before we explore the approaches that each model takes for in-

cluding time information into the modeling of brain and behaviors,
we first need to explicate how we will code time to support our
inferences. Of primary concern is where the intercept is estimated, but
other considerations are addressed. We will consider time coding in the
context of a linear slope model before generalizing these principles to
higher-order polynomial models.

Just like in any linear model, the model intercept is defined as the
value of the outcome where all other predictors are zero (Bollen and
Curran, 2006). If we wish to meaningfully interpret the intercept, we
need to ensure that the scale location where the other predictors are
zero is also meaningful. This is most often accomplished by centering
or normalizing predictors to a central tendency (mean or median) or
minimum value so that the intercept is at the mean or minimum of the
other predictors, although other approaches may be appropriate (Aiken
and West, 1991; King et al., 2018; McCormick et al., 2021). In a
longitudinal model, one of these other predictors is time and where
we code time as zero becomes the estimated value for the intercept.
The overwhelmingly common practice is to place zero at the first
time point (e.g., 𝑡 = [0, 1, 2,…]) such that the estimated value is
the ‘‘starting point’’ for the outcome of interest. However, there is
enormous flexibility with the coding of time (Biesanz et al., 2004;
Grimm, 2012; McCormick et al., 2021; Mills et al., 2014). If we want to
estimate intercept variability at the end of a treatment study, we could

place the zero-point at the final time point (e.g., 𝑡 = [… ,−2,−1, 0]).

https://e-m-mccormick.github.io/static/longitudinal-primer/03-time.html#single-cohort-data
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With each coding scheme, we get different estimates for the intercept18

ince it reflects the fixed and random effects of the level of the outcome
f interest at different points in the overall trajectory,19 and the effects
f predictors on the intercept will alter accordingly with this change
Biesanz et al., 2004; we discuss predictors in Section 3.3.1). While this
ight appear like we are estimating different models when we change

he time coding, in fact, all of these models are exactly likelihood-
quivalent; we can even transform each solution into one another if we
hoose (Biesanz et al., 2004). So it is possible to estimate a model with
single time-coding scheme and then generate alternative estimates

t any time point using only the information contained in that one
olution (Biesanz et al., 2004; Hancock and Choi, 2006). This does not
ake away from the potential utility of one coding scheme over another
or interpretation, but it is key that we recognize that changing time
oding schemes only draws information from the exact same data and
o the fundamental information contained in the model is not unique
cross different codings. See the Time Structure chapter for examples
f this point.

While we have focused on the changing estimates for the intercept
epending on where we locate zero, what has been happening with
he slope? As may be intuitive, changing the time coding in a linear
odel will not change the estimate of the linear slope at all. Indeed,

his will generalize to higher-order polynomials, where the highest
rder effect (e.g., quadratic, cubic, etc.) will be unaffected by changes
n time coding (Biesanz et al., 2004). However, lower-order effects
e.g., the linear effect in a quadratic model) will show differences in
heir estimates depending on changes in the time coding. This still
oes not reflect a change in the underlying model information and the
odels will be likelihood equivalent, but there are more things to keep

rack of in these higher-order models.
Finally, one thing to take caution in is that the zero point in

ongitudinal models should be contained within the range of the data.
f course, this is true of any linear predictor, however, we often
lace special interpretational weight on the intercept in longitudinal
odels. For instance, in a study of 6 – 18 year olds, using the raw

ges (𝑡 = [6,… , 18]) will result in an intercept estimate not for 6 year
lds, but for 0 year-olds. While the model can produce an estimate
or this hypothetical point in the age distribution, we could not make
nternally or externally valid inferences on this estimate. Instead, we
ould want to use an alternative time coding to estimate the intercept
t a meaningful point within the observed time window; for instance,
coding of 𝑡 − 6 (𝑡∗ = [0,… , 12]) to estimate the intercept at the

arliest age in our sample. Remember that polynomial growth functions
ypothetically extend to ±∞, but we should bound our inferences
ithin the range of the data available to us (Hancock and Choi, 2006).

.1.2.1. Model comparisons. Mixed-Effects Models. Multilevel and
eneralized additive models include time similarly and so we will refer
o them generally and point out specific differences as they arise.
owever, with respect to how the effect of time is expressed in the
odel, these two approaches are identical. Indeed, nothing much spe-

ial is happening from the model’s perspective. Time is simply another
redictor that enters the model linearly as any other (e.g., stress, task
erformance) would. As such, although we conceptually distinguish
ongitudinal models from others in the mixed-effects framework, no
pecial estimation approach is needed compared with models on cross-
ectional data. But before we feel too let down, we must recognize that
his is the strength of the mixed-effects models. Because time is treated

18 As well as for the covariance between the intercept and slope.
19 Of course, this depends on random variability in the slope estimates
ince simpler models might give different fixed but not random effects (ran-
om intercept, fixed slope) or identical fixed and random effects (random
ntercept-only).
9

like any other predictor, we can accommodate almost any20 type of time
structure in our data without issue. So fully inconsistent assessment
schedules like those in accelerated longitudinal designs present no
challenge for mixed-effects models because we do not need individuals
to share values of the predictor (if you are confused, think about
another predictor like depression and whether you would be concerned
that individuals do not share the same values; you would not be). As
such, including exact ages for each participant is entirely possible (and
should likely be the default approach for estimating developmental
effects with age) instead of needing to bin ages into discrete units. This
removes error variance due to the compression (or the technical term
‘‘smooshing’’) of age heterogeneity when estimating the model.

Latent Curve Model. In contrast to the mixed-effects model, time
oes not appear explicitly as a predictor in the model for the LCM or
CSM. Rather, time is coded into the factor loading matrix (Λ) which
ill weight the contribution of the underlying latent factors (𝛈). The
CM is a highly-restricted form of the confirmatory factor model (CFA)
here the factor loadings are set prior to estimation rather than being

reely estimated (Meredith and Tisak, 1990). As mentioned before, the
nsight that time structured data can be modeled in this way is an in-
redibly important one, allowing longitudinal analysis access to the full
lexibility and strength of the structural equation modeling framework.
owever, in its traditional form, the LCM has some limitations in the
inds of time structures it can accommodate. More recent developments
llow us to overcome some of these limitations, but they introduce
ome trade-offs (although perhaps not as many as is often thought).

The primary limitation of the factor loading approach is that the
raditional LCM attempts to model a residual estimate for each discrete
epeated measure separately (Bollen and Curran, 2006; Curran et al.,
010). As such, the LCM pools information across individuals in order
o compute a unique residual. In this form, we need some consistency
by design and/or through compressing information in the model) in
he assessment schedule (e.g., a time 1, time 2, etc.). We are not limited
o the fully consistent cohort model, as the full information maximum
ikelihood estimator used will allow for the cohort-sequential design
here the time points where individuals were not assessed by design
re treated as missing (Little and Rhemtulla, 2013). As such, a long-
tanding ‘‘truth’’ was that accelerated longitudinal designs were the
ole province of mixed-effect models, because the individually-varying
ssessment schedule did not allow these unique residual estimates.

While the second point is true, this does not prevent us from estimat-
ng a longitudinal model on accelerated data using the LCM framework.
ather than having a single unified factor loading matrix for the entire
ample, we can code individual factor loading matrices. Known as
efinition variables (Mehta and Neale, 2005; Mehta and West, 2000;
r TSCORES in Mplus), these methods allow us to accommodate fully
nconsistent assessment schedules.21 The downside is that this approach
revents the computation of absolute measures of model fit like the
FI/TLI/RMSEA because of the lack of an appropriate baseline model to
ompare with our model’s fit (Mehta and West, 2000). Of course, this is
limitation we accept every time we fit a mixed-effect model22 (Curran,
003) so perhaps this should not be treated as the end of the world;
fter all we did choose a complex structure of time with many other
dvantages to weigh against this loss. Currently, the definition variable
pproaches are relatively specialized and have yet to be incorporated
n all software options (OpenMx [von Oertzen et al., 2015] and Mplus
mplement these models, but at the time of this writing, lavaan has yet

20 Mixed-effects models can still suffer when data coverage over certain age
ranges is limited. One person out at 80 years old (young at heart?) in a study
of adolescents will not allow you to make appropriate lifespan inferences.

21 There are also continuous time SEM approaches that we will not address
here but may be of interest for dealing with fully inconsistent assessment
schedules (e.g., Oud and Jansen (2000-06-01)).

22 Remember that mixed effects models really are just specialized latent

variable models so this convergence should not be surprising.
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Fig. 1. A decision tree schematic for time-structure model selection considerations. Model choice for longitudinal data can be complex; however, some rough rules can be
mapped out here that serve as an initial guide. Here we focus on decisions about model selection based on assessment schedules and how time is included for each model option.
The main feature distinguishing the model frameworks in this section is their ability (or lack thereof) for handling inconsistent assessment schedules. We also highlight how each
framework encodes time into the model.
to include that functionality; example Mplus syntax files are available
here).

Latent Change Score Model. Finally, the latent change score is
erhaps the most unintuitive in terms of how it structures data in time.
nterestingly, the values of time appear nowhere in the LCSM model,
ither as a predictor or in a factor loading matrix. Instead, the slope
actor in a linear LCSM sums (i.e., all factor loadings are 1) across
he latent change (𝛥) factors built between each time point rather
han using an increasing factor weight like is done in the LCM. As
uch, LCS models are generally limited to cohort or cohort-sequential
ypes of structures, as the individually varying assessments cannot be
epresented easily23 within the model structure (but see Estrada et al.
2022) for recent developments).

.1.3. Decision tree I
With these model comparisons in mind, we can create a rough

ecision tree for model selection with respect to time structure. As
an be seen in Fig. 1, the primary consideration which guides model
election is the consistency of assessments. On one end, single- or
ultiple-cohort studies with highly-consistent assessments can be read-

ly modeled with any of the four frameworks, and other considerations
which we cover in subsequent sections) should drive model selection.
owever, highly inconsistent schedules would suggest leaning toward
ixed-effects models unless there was a compelling need for additional
odeling options available in the structural equation models.

.1.4. Additional considerations
While this manuscript is primarily concerned with model compar-

sons, we also highlight some additional considerations that may aid
n modeling longitudinal data.24 We will highlight a selection, but this
hould not be taken as an exhaustive list.

23 In principle, some sort of parameter moderation (Bauer, 2017) by
ndividually-varying assessment at the level of the latent time-specific or
hange factors could be possible but we have not encountered such a model
n the wild.
24 In other words, one of the authors (we will let you guess which) is
10

omewhat long-winded.
3.1.4.1. Different forms of ‘‘time’’. In the overwhelming majority of
longitudinal models, time is represented by some rough approxima-
tion of the amount of time an individual has spent on this Earth.
Whether age, grade, or some other chronologically structured met-
ric, these metrics assess the per unit change in the outcome across
minutes/hours/years. However, reflecting on the majority of devel-
opmental theories, chronologically-based metrics might be the least
relevant in many situations. For instance, many theories (Casey, 2015;
van Duijvenvoorde et al., 2016; Wierenga et al., 2018) posit change due
to biological maturation, a process that roughly tracks chronological
time – but certainly not exactly – and often varies widely in timing and
tempo across individuals (Marceau et al., 2011). Other theories might
suggest that changes in brain and behavior are driven by retest effects
(e.g., learning or habituation; Ferrer et al., 2004; McCormick, 2021;
McCormick et al., 2021) which may or may not be consistent across
individuals. As such, using age to structure longitudinal models will
lead to crude and biased inferences about the developmental processes
under study (McCormick, 2021).

In developmental neuroscience, perhaps the most obvious alter-
native to age in a longitudinal model is pubertal development (Mc-
Cormick, 2021; Wierenga et al., 2018), while in lifespan work, probing
for retest effects (either through a model or design) that can partially
counteract age-related declines are common (Ferrer et al., 2004). One
approach might be to ignore age and simply have pubertal status (or
other variable) be the sole form of time (Wierenga et al., 2018), but
it is also possible to utilize planned missingness designs to recover
unbiased estimates of multiple forms of time simultaneously (e.g., age
and puberty; Goddings et al., 2014; McCormick, 2021); see here for
examples. Of course, we should not ignore that there are often tradeoffs
in utilizing these more theoretically relevant forms of time. Phenom-
ena like maturation are incredibly complicated, with a multitude of
components (e.g., hormone production, physical development, neural
plasticity) that may be difficult (or impossible) to distill into one or a
small set of temporal predictors. Furthermore, these components may
have higher levels of measurement error associated with them than the
relatively straightforward measure of chronological age. One the other

hand, giving up because things are hard is not the solution either. While

https://e-m-mccormick.github.io/static/longitudinal-primer/03-time.html#time-coding
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still relatively nascent in their development, measures like ‘‘brain age’’
may offer a way forward. Measures of ‘‘brain age’’ attempt to predict
how old we would expect an individual to be based on some set of
features (e.g., morphological and functional features of the brain; Cole
and Franke, 2017). While using a metric of ‘‘brain age’’ to model
longitudinal changes in the brain might need to address issues of circu-
larity, one could imagine using a similar idea to predict maturational
status during puberty or senescence based on non-neural features to
subsequently structure a longitudinal model for outcomes of interest.
One major challenge for this kind of approach is to identify a gold-
standard validated measure of maturation to evaluate the predictive
model before application to a new sample.

One final alternative is to create structures of time using information
outside of the model. One natural example of this approach would be
relevant in studies where transitions occur inconsistently across indi-
viduals. Say we are interested in reward system reactivity following the
initiation of substance use in adolescence, where there will be natural
variation in the chronological age of onset. Instead of centering time
to a given age time point for all individuals, we could instead center
within a person to the time point that they first report substance use.
So, for an example study, we might have some individuals who begin
earlier (e.g., 𝑡 = [−1, 0, 1, 2, 3]) or later (e.g., 𝑡 = [−4,−3,−2,−1, 0]). Time
here is now scaled in ‘‘years until substance use initiation’’ instead of
chronological age. Note that this is not examining different trajectories
pre- and post-initiation like in a piecewise linear approach (e.g., Flora
(2008)), but rather re-scaling time for each individual separately to
center on a meaningful event (e.g., time-to-death in studies of ag-
ing; Kurland et al., 2009). While not as common in longitudinal studies
compared to universal time coding approaches, this is an application of
well-known approaches to centering of other predictors in longitudinal
models (Biesanz et al., 2004; Curran and Bauer, 2011).

3.1.4.2. Residual estimates. One modeling note that should be consid-
ered when fitting longitudinal models across different methods is the
default model behavior when it comes to estimating residual struc-
tures.25 In mixed effects models (MLMs and GAMMs), the default is
to estimate homoscedastic residuals or to generate a single estimate of
residual variance pooled across time points. In contrast, the default for
structural equation models (LCMs and LCSMs) is to estimate a unique
residual variance for each time point (i.e., heteroscedastic residuals).
However, these defaults are only that, and the majority of software
programs allow for either specification.26 It should be noted that ho-
moscedasticity is a model constraint that could introduce bias into the
model if improperly imposed. Fortunately, the homoscedastic model
is nested within the heteroscedastic model and the decrement in fit
associated with the imposition of homoscedasticity can be assessed
using a likelihood ratio test (see here for testing these competing
models).

3.2. The shape of development

In our tripartite goals of development (Curran et al., 2010), the
first is to chart the course of development. In other words, we need
to establish the optimal shape of the developmental trajectories for the
construct under study in our sample. However, there are a myriad of
potential shapes of development, and that shape may not be consistent

25 More exotic residual structures – e.g., autoregressive or Toeplitz – that are
ften included in intensive longitudinal models are uncommon in traditional
ongitudinal models where enough time passes between observations that
esidual dependence decays towards zero. Because of that, we will only
well on diagonal residual options – where there are no correlations between
esiduals of different items.
26 The notable exception being lmer from the lme4 R package, which

does not allow for complex residual structures. To obtain access to the
11

heteroscedastic residual specification, use lme from the nlme package.
across individuals or discrete groups. Furthermore, different modeling
frameworks allow for more or less flexibility in specifying different
functional forms to developmental trajectories. In this section, we re-
view the broad classes of potential developmental trajectories that one
could fit to their data, beginning with highly constrained polynomial
models and working our way up a hierarchy of flexibility towards
truly non-linear models. We highlight the relative strengths of each
modeling framework along the way, and then end with a discussion
of heterogeneity and generalizability across samples.

3.2.1. Polynomials
Leaving aside intercept-only models (Curran et al., 2014) which are

more common in intensive longitudinal modeling, the simplest form
a developmental trajectory can assume is a line. While simple, linear
growth models form the backbone of longitudinal modeling and are
often reasonable models for the kinds of data we frequently collect.
Furthermore, the linear model is easily fit with all of the modeling
frameworks we discuss here.27 Of course, linear models are simply the
canonical example of the broader family of polynomial models. While
less frequent, higher-order models like quadratic (Braams et al., 2015;
McCormick et al., 2021; Peters and Crone, 2017; Tamnes et al., 2018),
cubic (Chassin et al., 2009; Herting et al., 2018; Mills et al., 2016),
or things like inverse models (Luna et al., 2004; Nelder, 1966) also
fall under the polynomial umbrella, where developmental trajectories
are specified using powered terms of time.28 While these likely cover
the overwhelming majority of current applications, there is nothing
stopping us from adopting even more exotic polynomial models if
we think that they may be relevant (and we have the time points to
support them; Preacher and Hancock, 2015). In all cases, no matter how
complex the functional form a given model implies, the values of time
are fixed and known in the model. Consider the following factor loading
matrices for higher-order latent curve models (here we will focus on
the LCM notation because it is nicely compact, but the same principles
logically apply to the other model frameworks).

Λ𝑙𝑖𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0
1 1
1 2
1 3
1 4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Λ𝑞𝑢𝑎𝑑 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
1 1 1
1 2 4
1 3 9
1 4 16

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Λ𝑐𝑢𝑏 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Λ𝑖𝑛𝑣 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
1 1 1∕2
1 2 2∕3
1 3 3∕4
1 4 4∕5

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(17)

We can see that for each increase in the polynomial order (linear –
cubic), we add an additional predictor with higher-powered terms of
the linear model. However, in each case, we know the exact values for
each time predictor that models the shape of the particular develop-
mental trajectory (i.e., no values are estimated). Indeed, columns three
and four in the cubic model are just the squared and cubed values
of the second column, and we simply add a 1/x term to the matrix
for the inverse model. In SEMs, these factor loading matrices are used
to identify the latent variables that are associated with them while in
MEMs we would have variables in our data frame with these values
for each individual (see code examples in The Shape of Development
chapter for more information). The fixed-and-known nature of the time
predictors in polynomials lends it both power and restrictions for mod-
eling developmental trajectories. Because of their highly constrained

27 Although it would be somewhat of a waste of a GAMM’s utility, you can
easily specify a linear effect of time with no spline.

28 Linear being time1, quadratic being time2, cubic being time3, inverse
being time−1, and so forth.
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nature, polynomial models are often incredibly easy to fit to a wide
variety of data and achieve reasonable measures of model fit. They also
offer incredibly natural interpretations of model parameters, because
change per unit time is expressed in an easily understandable form.
On the other hand, the constraints of polynomial models often limit
their ability to describe complex patterns of development, or to account
for long periods of change (Fjell et al., 2010; Sørensen et al., 2021a;
Tamnes et al., 2017).

It is worth a moment to step back and consider the nature of
polynomials to see how they might provide sub-optimal fit for describ-
ing developmental processes. First, all polynomials are defined across
the range of [−∞,∞]. While the careful researcher would only ever
se the function to infer information within the range of the sample
ata,29 this mathematical definition still influences how developmental
rajectories are estimated. Consider for example, a quadratic model for
ata that is truly linear. Simply due to the mathematics of including
he higher-order term, slight curvature will be induced. Furthermore, as
he developmental window expands, the less well-described outcomes
re by simple polynomials. For instance, how likely is it that reward
ensitivity continues to show permanent increases across the whole
ifespan, even if trajectories of change are fit well by a linear term
uring adolescence? Or that the negative values of emotional regulation
hat a quadratic form will eventually imply are reasonable? As such,
he types of inferences we can make with these models are much more
imited in lifespan types of data.

However, with quadratic (and cubic) terms in particular, an even
ore problematic issue is how the inflection points in developmental

urves are dependent on cases at the edges of developmental trajecto-
ies. For instance, in data that increases before plateauing, a quadratic
unction will attempt to fit a model that shows decreases at later ages
ecause that is the shape of a quadratic. Because this form is forced in
he polynomial model, observations at the tails of the age range will
xert extra influence on the curvature in ways that may be undesir-
ble (Fjell et al., 2010). For this reason, researchers would do well to
nclude robustness checks on higher-order polynomials by running per-
utations of the model with different subsamples of individuals at the

dges and assessing the changes to the effects of interest. While these
imitations are unlikely to (and should not) prevent the widespread use
f polynomial models for modeling longitudinal change, researchers
hould be aware of the mathematical assumptions they bring on board
hen using polynomial expressions. At the end of this section, we
iscuss some potential ways forward, combining multiple approaches
n order to provide greater confidence in results.

.2.2. Piecewise models
One potential compromise for fitting more complex developmental

rajectories (e.g., changes followed by plateaus) without sacrificing
nterpretability of the parameters is to use piecewise functions (Flora,
008). Piecewise functions allow us to fit a set of simple polynomial
odels to portions of the overall developmental trajectory, joined by

nots which allow for different kinds of discontinuities in the functions.
eturning to our factor loading matrices from before, if we thought that
ur developmental trajectory was best described by initial increases
ollowed by some plateau, we could fit two linear pieces using the
ollowing form.

𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
1 1 0
1 2 0
1 2 1
1 2 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(18)

n this specification, the first piece (second column) is a linear effect
ver the first three time points and then no further (this is why the

29 Right? Right...????
12

s

integer increases stop). The second piece (third column) has no effect
for the first two time points and then begins exerting an influence
for the last 3. As you can see, the two effects share the third time
point (i.e., the knot point) which is where the discontinuity in the
overall functional form occurs. The above specification (known as the
two-rate parameterization) allows us to interpret the effect of the two
pieces quite intuitively for most contexts (each piece is the per time
unit change in the outcome) however, it is possible to formulate the
piecewise another way.

Λ𝑝𝑖𝑒𝑐𝑒𝑤𝑖𝑠𝑒′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
1 1 0
1 2 0
1 3 1
1 4 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(19)

Here, in what is known as the added-rate parameterization, we can
now interpret the second slope as the per time unit deflection from
he initial slope (i.e., the additive effect of the first and second rates).
his parameterization is relatively rare but can be well-suited for inter-
ention research where we might want to understand how treatment
eflects individuals from their original trajectories. Like the standard
olynomial model, both of these parameterizations are easily fit using
EMs or SEMs (code examples of the MLM and LCM forms of these
odels can be seen here; GAMM and LCSM versions are possible but
ncommon given their ability to model true non-linearities in other
ays). Of course, the linear piecewise model is just the most simple
ersion to consider. Given sufficient numbers of time points, we could
odel higher order functional forms on each side of the knot and

ndeed can fit different forms for each piece (e.g., a quadratic first piece
ollowed by a linear second piece; Cudeck and Klebe, 2002; McNeish
t al., 2021).

One key feature of the piecewise model is the knot point, where the
unctions are joined. Since a line is minimally defined by three time
oints, we need a minimum of five observation occasions to fit the
implest form of these models (3 for each piece with a shared time point
t the knot), which may limit their application for practical reasons.
hile placing the intercept of the model at the initial time point may

e perfectly reasonable, researchers often wish to estimate the level at
he transition (i.e., knot) point in the trajectory, which involves the
imple re-coding of the first time predictor, as we can see below.

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 −2 0
1 −1 0
1 0 0
1 0 1
1 0 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(20)

or instance, we might wish to estimate symptom severity at the start
f the intervention or children’s risk preferences at the start of a
chool transition (e.g., middle to high school), making this coding of
ime the most informative. In other contexts, however, we might not
now exactly when a transition will occur (e.g., when one begins to
se a given substance). In these instances, we can add an additional
et of parameters that will model the unknown location of the knot
oint (Cudeck and Klebe, 2002; Kohli et al., 2013). Of course, these
ethods often require many more time points to arrive at stable

olutions, and the locations of knots are fundamentally limited by
he number of time points (i.e., the knot can never be placed at the
irst or last two time points). As such, these models may be more
ppropriate in designs that either have denser sampling or cover a
arger age range using accelerated designs (see McCormick et al. (2021)
or an example of combining piecewise models for denser samples with

impler polynomial models in these types of designs).

https://e-m-mccormick.github.io/static/longitudinal-primer/04-shape.html#piecewise-trajectories
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3.2.3. Nonlinear models
Finally, we can consider models which fit truly nonlinear patterns

of development over time.30 We will exclude nonlinear trends based
n polynomials from this discussion for reasons that will hopefully
e clear, but it should be noted that our hierarchy is not entirely
ithout some fuzziness. Up until now, the models we have discussed

an mostly be fit with whichever modeling framework the researcher
esires. However, here there is much greater need to carefully weigh
he different applications that each method may be best suited for. We
irst discuss the methods each framework takes to model non-linear
atterns over time and the specific attendant considerations before
oving into a discussion of the overall strengths and challenges of
on-linear trajectory approaches.

.2.3.1. Mems. The majority of the nonlinear applications (again ex-
epting the polynomial models) in MLMs are those which are nonlinear
ith respect to the parameters (e.g., a logistic or negatively-accelerated
xponential model; see Cudeck and Harring (2007), Grimm and Ram
2009), Harring and Blozis (2014) for examples). While certainly inter-
sting in their applications, they do not differ much in principle from
inear models with respect to their flexibility of fitting developmental
rajectories. Just like standard polynomial models, the researcher needs
o pre-specify the functional form and then the various parameters
ssociated with that form are estimated as part of the model fitting-
rocedure. This stands in strong contrast with GAMM, where there is
ubstantial flexibility in fitting developmental trajectories that cannot
e described by a single, unified equation. Indeed in a GAMM, the
rajectory is built up from several splines or basis functions which
ombine to form a highly complex nonlinear surface (Lin and Zhang,
999; Sørensen et al., 2021a; Wood, 2011). As such, GAMMs are one
f the best models for fitting data which contains transitions between
eriods of change and periods of stability or reversals in the direction
f change, which is often true of complex intensive longitudinal data,
s well as lifespan data (Sørensen et al., 2021a; Tamnes et al., 2017)
here continual growth in any direction is unlikely to be realistic.

.2.3.2. Sems. Turning to SEMs, there are several interesting potential
onlinear models that are possible. The LCM can accommodate all
f the specified nonlinear functions that are possible in the MLM
see Bauer (2003), Curran (2003), Preacher and Hancock (2015) for
ome bridges between these models), however, the change in parame-
erization from time as an observed predictor to being an element in the
actor loading matrix allows for a unique form of nonlinear model. In
hat is known as a free-loading or latent-basis model (McArdle, 2009),
e can return the LCM to some of its confirmatory factor analytic roots
nd estimate rather than specify some subset of factor loadings. We can
mplement this model in one of two ways, shown below.

Λ𝑓𝑟𝑒𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0
1 1
1 𝜆32
1 𝜆42
1 𝜆52

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Λ𝑓𝑟𝑒𝑒′ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0
1 𝜆22
1 𝜆32
1 𝜆42
1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(21)

fixed factor loading

freely-estimated parameter
Here we can estimate all but two factor loadings, which set the scale

f the growth model, based on the characteristics of the data (see here
or implementing these models). While the former parameterization
cales the estimated loadings to the amount of change between time 1

30 It can be understandably maddening for those new to quantitative meth-
ds that terms like nonlinear model can refer to multiple things. Here we
ill mostly use it to refer to nonlinearities in the pattern of change over time
eing modeled as opposed to models where the parameters enter the equation
onlinearly (e.g., models for categorical outcomes). However, in the interest
f being maximally confusing, there are methods which are nonlinear in both
13
enses (e.g., Gompertz curves).
and 2, the former assesses how much of the total change between time
1 and 5 has occurred at each time point. In both, however, we have
increased the flexibility of the model to accommodate nonlinearities
by allowing for unequal change between sets of observations (Debatin
et al., 2019; McArdle, 2009). This type of model might be especially
useful if a researcher expects there to be variability in the rate of
development over time. For instance, when examining the developmen-
tal trajectory of peer influence, the COVID pandemic might interrupt
more systematic growth we might have seen otherwise. While we will
talk about general challenges associated with these flexible nonlinear
models below, one specific challenge that should be raised here is the
challenge that free-loading models present for parameter interpreta-
tion. In the usual linear LCM, the fixed and random effects are easily
interpreted as the average and individual change respectively in the
outcome per 1-unit increment in time. However, in the free-loading
model, the unequal change limits us somewhat to talking about the
degree to which the fixed effect is expressed in individual effects. While
very flexible, this may be a somewhat unsatisfying limitation when
interpreting results. The LCS model, by contrast, typically implements
nonlinearities into developmental trajectories not through the factor
loading matrix (although in theory this is possible, exactly what those
parameters would mean in the larger context of the model has not
be explored in depth) but through the inclusion of the proportionality
parameter (for details, see Section 2.2.2 on the LCSM; Grimm et al.,
2012). This parameter can be thought of as a ‘‘dampening’’ – or ‘‘ex-
ploding’’ if it accelerates the function – parameter which introduces an
exponential form to the trajectory, making the LCSM ideally suited for
data with asymptotic growth patterns. Because the LCSM can subsume
the LCM, it can be viewed as the most maximally flexible form of the
SEM and its applications for modeling nonlinearities is an active area
of research (Grimm et al., 2012, 2013; Grimm and Ram, 2009; Ram
and Grimm, 2007).

3.2.3.3. Advantages and challenges. As we have mentioned several
times, the true power of these nonlinear models is the ability to
flexibly fit complex, non-monotonic changes. These approaches have
become very appealing to researchers who feel that we often know
relatively little a priori about the shape of development and who would
prefer a data-driven approach where the characteristics of the data are
given more weight in determining developmental trajectories. To some
extent, this is a perfectly legitimate approach, as many of these models
do a good job of approximating the local features of sample data.
However, the idea that these data-driven approaches can replace more
theoretically informed forms of trajectories is likely ill-conceived both
practically and theoretically. Given the complexity of the trajectories
that these models fit and the relative lack of interpretable individual
effects, they are most often not useful as explanatory models and
instead are most useful as descriptive or purely predictive31 models.
Furthermore, these models have a terrible tendency to overfit the local
features of the data and can appear to be the best-fitting model even in
simulations where the true data-generating mechanism is known to be
otherwise, simply due to optimizing to sampling variability. As such, we
would encourage researchers who adopt these methods to accompany
them with sensitivity analyses such as out-of-sample replication or a
form of cross-validation (e.g., split-half or k-fold; Grimm et al., 2017;
Jacobucci et al., 2021; de Rooij and Weeda, 2020) to ensure they are
not overfitting the data at hand.

31 Here we mean that the researcher is interested in predicting an outcome
without offering a specific causal explanation of how or why an effect is
predictive. These models are very common in machine learning applications
but less so in the psychological or brain sciences.

https://e-m-mccormick.github.io/static/longitudinal-primer/04-shape.html#nonlinear-trajectories
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Fig. 2. A decision tree schematic for determining the shape of development. The complexity of developmental trajectories we can model is determined by both the number
f observations and the range of development we attempt to model. This rough heuristic can give some ideas of where to begin with establishing the optimal developmental shape.
ote that the number of time points does not need to be exclusively within-person (e.g., multi-cohort or accelerated data).
.2.4. Decision tree II
Before moving into some additional considerations for determin-

ng the shapes of trajectories, we can summarize a decision tree for
dopting different trajectory shapes for our data. The major decision
oints hinge on both the number of observations (either within or
cross person), the developmental window covered by the data at
and, and the need for interpretable parameters (see Fig. 2 for a flow-
hart of these considerations). While many traditional longitudinal
esigns can be well-described by simple polynomial models, with more
ime points and greater developmental coverage (e.g., a larger age
ange), nonlinear models become more attractive. However, we need
o be concerned about overfitting and recovering parameters with
traightforward developmental interpretations when adopting these
odels.

.2.5. Additional considerations
Here we briefly outline some additional considerations that re-

earchers should keep in mind when establishing optimal functional
orms in their developmental trajectories. Some of this information
uilds on some briefly-mentioned points from above, but with an eye
owards comparing across approaches.

.2.5.1. Fixed versus random effects. In most of the models we have
iscussed thus far, we can model two types of effects in our model,
he average or typical (i.e., fixed) effect and the individual devia-
ions (i.e., random) from that fixed effect. In general, the fixed effect
escribes normative and population-level developmental change over
ime, whereas the random effect describes individual differences in
he starting point or change over time (however that manifests for a
articular model). While all MEMs and SEMs are capable, in theory, of
itting both effects, there is often confusion about when design-based
onsiderations might limit the ability to estimate complex effects at
14

ach level. Since three time points are needed to minimally identify a
linear slope,32 we cannot typically33 estimate a random (i.e., individual)
effect for anyone with fewer time points in our data (Parsons and
McCormick, 2022). However, we might be able to fit a fixed effect in a
linear (or even spline) model if we have more than two time points in
our data in aggregate. Indeed, this is the entire rationale of accelerated
longitudinal studies for covering large age ranges despite no single
individual having more than a few observations and certainly no one
observed over the entire age range in question (McCormick, 2021;
McCormick et al., 2021; Sørensen et al., 2021a). Often in these designs,
we can fix a relatively complex fixed effect of the developmental
trajectory but be limited to a random intercept and/or linear slope (see
here for an example).

3.2.5.2. Generalizability. Relatively few of us are truly interested in
describing the optimal developmental trajectory for the sample data
we have at hand in a narrow way. Rather, we seek to use that data in
a principled way to make inferences to a larger population. This desire
for generalizability34 should serve as an important check on complexity
when establishing the course of developmental change. It is almost
axiomatically true that more flexible models, like GAMMs and latent-
basis models, will provide better fit to any given sample, compared
with more-restricted forms like the polynomial, given their sensitivity
to local information (Wood et al., 2015). However, if we were to try to
impose these same complex shapes on new sample data, it is likely that
they would fail miserably, and re-estimating the effects would result in
a new flexible shape. In contrast, a linear model might fit quite well
across samples, even if it underperforms in each sample individually

32 And 4 to specify a quadratic, etc.
33 We can sort of approximate a random slope effect with 2 time points per

person, but it is really more of a random difference score which will be less
reliable since the change is determined between 2 points instead of estimated
like with 3+.

34 The arguably more important, if oft-neglected, sister of reproducibility

and replicability. There is a band name in there somewhere.

https://e-m-mccormick.github.io/static/longitudinal-primer/04-shape.html#fixed-and-random-effects
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against alternatives. Model complexity should always be balanced
against threats to external validity and generalizability because of this
tendency to overfit. Researchers can take advantage of well-understood
tools such as split-half and cross-validation (de Rooij and Weeda, 2020)
in order to guard against this propensity for overfitting.

3.3. Covariates and distal outcomes

While in the previous section, we focused on establishing the course
of development, we now turn to how different modeling frameworks
accommodate understanding the causes (i.e., covariates/predictors)
and consequences (i.e., distal outcomes) of developmental processes.
We first address causes, detailing how different predictors enter the
different models based on the level at which an effect operates. We pair
this discussion with the idea of within- and between-person variance in
longitudinal models, as well as an understanding of when a variable is
properly understood solely as a cause versus a co-developing outcome.
We then turn to the question of consequence by exploring how different
modeling frameworks accommodate prediction based on trajectories.
When we use the word ‘‘cause’’ here, we actually mean it without the
usual soft-footing around with terminology. The structure and design
of our data and the presence of unmeasured confounders determine
how strongly these causal claims can be defended, but we do not
think this means we should shy away from what single-headed arrows
(i.e., regression rather than correlation) actually claim. The causal
inference literature is vast on its own, but interested readers can see
the following references for an entrée into the literature on longitudinal
causal inference (Winship and Morgan, 1999; VanderWeele et al., 2016;
van der Laan and Petersen, 2004).

3.3.1. Covariates: Time invariant and time varying flavors
It should be clear35 that we do not treat the complexities of estab-

lishing the proper shape for developmental trajectories lightly. How-
ever, at a fundamental level, it is relatively unsatisfying to simply chart
descriptively how development unfolds without developing causal ex-
planations for those patterns.36 For instance, knowing that there is
person-to-person variability in the rate of change in reward sensitivity
begs the question: why might someone show more or less change in
that sensitivity? These questions lead naturally to testable hypotheses
about the predictive relationship between our outcome of interests and
a variety of covariates that we can introduce into the model. These co-
variates come in two broad classes with surprisingly descriptive names
(considering the usual trend in quantitative methods), time-invariant
and time-varying. These different covariate classes enter the model at
different levels and imply different types of causal processes. All of
the modeling frameworks we consider here can broadly accommodate
both types of covariates, although there are distinctions which we will
highlight as appropriate. Furthermore, we will mostly discuss these
considerations for a single covariate, but these principles naturally
generalize to a set of predictors with little change.

Time-invariant covariates (TICs) are measures that do not vary
across time (or at least the time window under consideration). The
extent to which any measure is truly invariant is somewhat dubious,
nd so TICs are often variables that are measured once, and then
trong assumptions (although often unrecognized) are made that they

35 If nothing else than by the amount of (virtual) ink we spilled on the topic
n the prior section.
36 While covariates might also be useful for purely predictive modeling
here we are unconcerned with explanations and only minimizing the predic-

ion error, another branch of models entirely are useful for those sorts of aims
nd so we will not spend time on those applications. It should also be noted
hat those models are not exempt from causal and explanatory concerns, but
15

hey manifest differently – e.g., in which variables are selected for prediction.
would not change if we were to measure them repeatedly.37 Other
ovariates are truly time-invariant (e.g., treatment group) or invariant-
y-definition (e.g., childhood SES or maltreatment, maternal age at
irst birth). Regardless, TICs explain variance at the between-person
evel, which means that they explain person-to-person differences in
he parameters of the growth model (e.g., intercept level or slope of
hange over time). In MEMs, this means that TICs enter the model
quations at Level 2 (Curran and Bauer, 2011), or in SEMs that the TIC
redicts the latent growth factor(s) directly (Biesanz et al., 2004). As
uch, their effect on the individual measures is transmitted through the
andom effects/latent factors38 (see here for code examples of each). In
he SEMs, we can additionally predict specific repeated measures with
TIC (known as a multiple-indicator, multiple-cause or MIMIC model
ith direct effects; (Bauer, 2017; Jacobucci et al., 2019; Jöreskog and
oldberger, 1975; Kievit et al., 2014; Stoel et al., 2004), which sets
p a form of mediation since the TIC now effects a repeated measure
irectly and indirectly (through the latent factor[s]). However, because
here is no temporal precedence between the TIC and growth factors,
his amounts to cross-sectional mediation in most cases (Curran et al.,
014; Curran and Bauer, 2011; Hamaker et al., 2014). SEMs also allow
or the inclusion of latent TICs, where we can attenuate measurement
rror in the covariate as well (Bollen, 2002). Finally, we can include
ultiple TICs, as well as interaction terms, with reasonable ease (Cur-

an et al., 2004; Curran and Bauer, 2011; Preacher et al., 2006). While
his treatment may seem cursory, covariates at the time-invariant (or
erson) level are conceptually similar to standard regression contexts
nd their effects on the latent factors can be interpreted in much the
ame ways. For effects that incorporate time in more interesting ways,
e need to turn to covariates which themselves show variability across

ime.
In a rare case of informative naming, time-varying covariates (TVCs)

re covariates that...wait for it...vary over time. In this respect, they
ore closely resemble the repeated measures outcomes we are focused

n when modeling developmental trajectories (more on this later)
n our data frame, with multiple unique values for each individual.

hile TICs can only explain between-person variance, TVCs explain
oth within- and between-person differences depending on how they
re entered into the model (Curran and Bauer, 2011). While perhaps
nintuitive, we can think of TVCs as containing information unique
o each time point (i.e., each individual measure) but also aggregate
nformation (i.e., each person’s average over all measurements). To
void making misattributions of effects at the wrong level, we need
o take additional steps which we will discuss in the next section
ocused on separating variance. Like with TICs, we can include multiple
redictors, as well as product terms. However, we can go further with
VCs by including a random component to the covariate effect, just
s we do with the effects of time. The fixed effect of the TVC is the
ample average effect, but the random component allows for individual
ifferences in the relationship between the TVC and outcome. For
nstance, some individuals might show a stronger effect of anxiety on
rinking than others. Furthermore, we might be able to bring TICs
o bear to predict which individuals might show stronger or weaker
ffects of the TVC. This application of what are known as cross-level
nteraction effects (Bauer et al., 2006; Bauer and Curran, 2005; Curran
t al., 2004) is relatively rare in the literature but offers a powerful
ool for building causal explanations for the patterns of relationships we

37 An oft-discussed example of this is the inclusion of sex/gender variables
as TICs. We do not want to gloss over the challenge; gender is clearly not
immutable across time, but it is possible that within a sample there is not
sufficient variability to model time-varying effects. We think that these are
serious questions that should inform study design (e.g., sampling, using time-
varying measures of gender expression instead of categorical measures) as
those will determine the possibilities for modeling.

38 Remember that these are really the same thing (Curran, 2003; Bauer,

2003).

https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#covariates-1
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observe during development. There are well-developed tools in MEMs
and SEMs for probing these and other forms of interaction that are very
user-friendly (Preacher et al., 2006).

3.3.1.1. Model comparisons. While the differences in how the various
odeling frameworks treat TICs (which we mentioned above) are

easonably slight, there is a greater difference between how MEMs and
EMs treat TVCs. For MEMs, TVCs effects are aggregated across time
o give a single effect estimate (unless some sort of formal interaction
s included). This means that you can have an effect of anxiety that
aries between individuals in magnitude (i.e., with a random effect),
ut you cannot probe time-specific effects of being higher or lower on
TVC at a specific time point. The closest you could come is to create
product interaction between time and the TVC to look at changes in

he effect of the TVC across some smooth function of time. With SEMs,
y contrast, we can get time-specific effects of the TVC and compare
his with a model where those effects are held constant (i.e., the MEM
orm of the model; see here for an example).

Another difference arises when including lagged effects in MEMs
ersus SEMs. Lagged effects are often attractive because they ask how
he prior level on a TVC prospectively predicts status on an outcome
ater in time. While not sufficient to establish causal effects (Rohrer
nd Murayama, 2021; Shadish et al., 2002), temporal precedence is a
ey condition in that pursuit. However, a lagged path creates implicit
issing cases even if our data are otherwise complete, because there

s no data on the prior level of the TVC before the first observation
or each individual. Because of the way MEMs organize the data, this
eads to listwise deletion of the first time point for each individual in the
ataset, potentially causing significant issues with model estimation or
ower. For instance, many longitudinal datasets contain a maximum of
time points per person, so a lagged TVC MEM would render a random

ffect of time impossible at the individual level (McNeish and Matta,
020). By contrast, the SEM is built from a system of equations, and it is
rivial to just not include a path from this theoretically 0th observation
f the TVC. Furthermore, SEM allows for a more flexible inclusion of
ndividual information even with missing data on a covariate. Without
igging too much into the technical details, MEMs and SEMs are fit
y default with a conditional likelihood which does not allow for
issing data on an exogenous (𝑥-side) variable. However, with SEM

oftware, we can implement a joint likelihood approach by estimating
mean and variance for the exogenous variable (Bauer, 2003; McNeish
nd Matta, 2020). This does invoke distributional assumptions that we
therwise do not make about exogenous variables but can be a way to
reserve cases that have missing data on covariates.

.3.1.2. Decision tree III. When adding covariates to our longitudinal
odels, we can consider three primary branching points (Fig. 3).

irst, whether the covariate obtains different values across time (time-
arying) or is time-invariant (either in truth or by measurement limi-
ations). Secondly, for TVCs, whether we need time-specific or lagged
ffects, where SEMs can provide a more tractable option compared
o MLMs. Lastly, we need to consider whether we should treat our
ime-varying covariate as exogenous at all – either because it is sys-
ematically changing over time or because it shares reciprocal relation-
hips with the primary outcome – versus including it as an additional
utcome in a multivariate model.

.3.1.3. Separating within- and between-person variance. We mentioned
reviously that TVCs can explain within- and between-person variance
ecause they contain time-specific and aggregate information. This
epresents a threat to internal validity since we might misattribute an
ffect as a within-person process (e.g., when I experience more stress, I
ake more risks) that is truly a between-person effect (e.g., individuals
ho experience more stress on average take more risks on average).
urran & Bauer (2011) have an excellent introduction to the issue
nd solutions in the MLM (which generalizes to MEMs), for those who
ish a more in-depth treatment. Because most of our hypotheses in the
16
behavioral and brain sciences concern within-person processes (Curran
et al., 2014; Curran and Bauer, 2011; Hamaker et al., 2015), it is
important to isolate those effects in our longitudinal models.

MEMs. Separation of within- and between-person variance in these
odels is accomplished through centering TVCs and the potential

nclusion of person-level averages of TVCs (Curran and Bauer, 2011).
hile we will leave the details to the aforementioned treatment, the

ssential idea is that we can remove person-to-person variance in the
VC by subtracting the mean (which kind of mean will depend on the
xact method; see Curran and Bauer (2011)) so that the TVC at Level
yields a pure within-person effect. We do not discard the average

nformation, though, but instead create a new variable representing
he person-to-person differences in average level of the TVC (which
ecomes a TIC) and enter it at level 2. Thus, we now estimate two
ifferent effects: (1) the pure within-person effect at Level 1, and (2)
ither the pure between-person effect at Level 2 (group-mean centering)
r the difference between the within- and between-person effect (grand-
ean centering). Interested readers can refer to prior work in this

rea (Curran and Bauer, 2011; McNeish and Matta, 2020) as well as
practical demonstration in the available code.
SEMs. Structural models can accomplish separation of within- and

etween-person variance using the same centering methods that we
iscussed with MEMs. The within-person effect is estimated with re-
ression paths from the TVC directly to the repeated measures and
etween-person effect with paths to the growth factors. However, SEMs
llow for another method of separation which nicely bridges to the next
ection. Rather than create new variables via centering, we can instead
stimate a latent intercept factor on the TVC values just like we would
ith an intercept-only growth model (Hamaker et al., 2015), or add
dditional functional forms (e.g., linear slope; Curran et al., 2014). In
his specification, all of the between-person variance is captured at the
atent variable level, and all the within-person variance remains in the
egression paths from the TVC to the outcome (see here for how to
mplement these models).

.3.1.4. Covariates versus multiple outcomes. Of course, once we have
stimated a growth factor on the TVC, the natural question is: Is our
VC not a repeated measures outcome itself? The answer in a technical
ense is ‘‘of course’’ since the factor predicts the TVC variables, but con-
eptually we might still think of the variable as an exogenous covariate
ather than a fellow outcome. One operative question is whether we
hink that the covariate itself will change systematically with time. If
t does, then failing to treat it as another outcome in a multivariate
odel will bias the effects of the TVC on the primary outcome of

nterest (Curran and Bauer, 2011; McCormick, 2021). However, an
ven more important, conceptual question, is whether we think our
redictor is truly exogenous and the direction of causal effects only
un in one direction, or whether the two (or more) constructs are co-
eveloping across time (Curran and Hancock, 2021). We would suggest
hat most of the TVC effects we estimate in our science are the latter
ather than the former.

The practical implementation of modeling a multivariate model is
ne of the sharpest dividing lines between MEMs and SEMs. MEMs
re at their core, a univariate method; so while multivariate models
re possible (Baldwin et al., 2014; Curran et al., 2023; MacCallum
t al., 1997), it involves essentially tricking the model by combining the
utcomes into a single variable and using dummy codes to separate the
ffects (see here). Furthermore, MEM software is not universally well-
eveloped for modeling all the effects we would like in a multivariate
odel.39 SEMs, by contrast, are fundamentally a multivariate model

39 As of this writing, the popular R packages do not allow for unique time-
specific residual covariances, which are an important feature of multivariate
models. To our knowledge, only SAS PROC MIXED allows for complete
flexibility in modeling all the effects we could get with ease in any SEM
software. Note that for these purposes, we consider Mplus to be a SEM software

because its MEMs are implemented in a SEM convention.

https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#time-varying-covariates
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#within--and-betwen-person-variance
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Fig. 3. A decision tree schematic for covariate modeling. A heuristic for including covariate effects in longitudinal models. We not only focus on the type of covariate model
one would likely implement but how they are handled in each of the modeling frameworks. Primary considerations include how the covariate changes – or does not – over time
and whether we can plausibly consider it exogenous to the developmental system.
(even in the single-variable case, it treats the repeated measures as
separate outcome variables). As such, incorporating additional out-
comes in the same model is trivial.40 In this sort of model, all sorts
f effects are possible, including cross-construct regressions among the
esiduals (Curran et al., 2014; Curran and Hancock, 2021; Usami et al.,
019). Indeed, multivariate LCMs and LCSMs can be some of the most
nteresting models for testing developmental hypotheses (Curran and
ancock, 2021; Grimm et al., 2012; McArdle et al., 2009) and we
ould encourage researchers to consider them in their own work.

.3.2. Distal outcomes
Finally, we can turn to the final goal in the developmental sci-

nces of characterizing the consequences of development. While our
iscussion sections are often full of the potential consequences of
evelopmental trajectories, testing these hypotheses directly is still
elatively rare. In some part, this is due to the challenges of collecting
istal outcome data, since ideally this would temporally follow the
ata which is used to build developmental trajectories so that causal
nferences are more sound. Not only is another wave of data collection
n additional expense, but the temptation to also collect a full battery
gain rather than specific distal outcomes is not without merit. How-
ver, to fully contextualize development, we need to design studies that
pecifically test the consequences of individual differences in develop-
ental trajectories. For instance, is variability in social information
rocessing important for predicting later friendship, life-satisfaction
r mental health outcomes? What about risky behavior or reward
ensitivity during adolescence and contact with the criminal-justice
ystem or physical well-being? If not, then it begs the question why
e pour millions of dollars into our studies to map out behaviors that
nly ultimately impact adolescents’ lives through the CO2 our journals
ost to host online.

While distal outcome estimation is an active area of research in
uantitative methods (Smid et al., 2020; McCormick et al., 2023),

40 You have got to love it when a quantitative person says this. But it should
e!
17
when it comes to model selection, the differences between modeling
frameworks are relatively clear. In general,41 MEMs need to utilize a
two-step approach to estimate the distal outcome effects. This involves
estimating the developmental effects and then using model-implied
information in the form of Empirical Bayes estimates (Liu et al., 2021)
in a second regression analysis with the distal outcome. This is not
an ideal way to do distal outcome prediction because it treats model-
implied information, which should have appropriate standard errors
associated with it, as fixed-and-known (i.e., no uncertainty) in the re-
gression analysis. It will be unsurprising to the reader at this point that
the SEM methods can accomplish the prediction of the distal outcome
with relative ease given the multivariate framework. The two step
procedure is available through the estimation of factor score estimates,
but has been shown to be sub-optimal (Skrondal and Laake, 2001)
compared with simultaneous estimation of the entire model in most
cases. As such, strong preference should be given to SEM methods in
most models with distal outcomes in most cases (see here for examples
of each approach).

3.4. Nested data

A final factor for model selection that we will consider here is
what approaches exist to accommodate nesting in data. However, we
will take a more expansive view of nesting than what is typically
conceived and detail many ways in which we can incorporate grouping
information into our longitudinal models. Broadly, we will take nesting
to mean that some units in your data are grouped together into clusters
which are more similar to one another than to members of other groups
in the data. We will show that many different methods for incorporating
this grouping information are possible, from simple, predictor-based
adjustments, to building almost entirely separate models. Then, we will
step back to consider when we need to adjust for nesting through formal
model assumptions, like the standard MLM, versus alternatives.

41 Fully Bayesian methods complicate this distinction somewhat, but as with
the Mplus implementation of MLMs, this is really more of a full latent variable
framework and is similar to SEM estimation approaches in that respect.

https://e-m-mccormick.github.io/static/longitudinal-primer/05-covariates.html#distal-outcomes
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3.4.1. Methods for accounting for nesting
While often not considered a form of nesting, the inclusion of some

categorical (e.g., binary, multinomial, or even ordinal) variable in a
regression is a form of incorporating nested information into the model
of our outcome of interest. Very common examples of this sort of ap-
proach include treatment effects, self-identified sex,42 or race/ethnicity
ariables into the model. Whether these are focal predictors or covari-
tes used to partial out the associated variance, all of these methods
ccount for conditional shifts in the mean of the outcome based on
roup membership. While there are likely exceptions to this general
ule, these predictors are TICs and therefore explain person-to-person
ariability in the outcome, which is why we include them here as
method of accounting for nesting within our data. Furthermore,

he multiple-groups model (Jöreskog, 1971) and its generalization to
oderated nonlinear factor models (Bauer, 2017) can be viewed in

he same light, but allow for any kind of parameter in the model to
ary across either discrete (multiple groups) or continuous (MNLFA)
ariables (see the Nesting chapter for code examples).

More traditionally recognized forms of nesting (e.g., children nest-
ng within schools, repeated measures nested within person, etc.) can
roadly be accounted for using one of two general approaches: fixed
nd random effects. These methods account for the increased simi-
arity of observations that are drawn from the same higher-level unit
e.g., school or the individual) compared to what we would expect in
simple random sample. This increased similarity actually reduces the

mount of total information in our sample, since nested observations
re partially redundant.43 The use of a fixed or random effect approach
as historically been a matter of preference across disciplines (McNeish
nd Kelley, 2019; Hamaker and Muthén, 2020), however, we prefer
o think of the two as complementary; to be used in conjunction
epending on the specific needs of the model at hand. A fixed effect
pproach often44 involves the inclusion of dummy code predictors for
ach group directly into the model equation (McNeish and Kelley,
019). If we had 3 groups in our data (perhaps 2 treatment groups
nd a control), the model expression would look something like the
ollowing:

𝑡𝑖 = 𝛽1Cntrl + 𝛽2Treat1 + 𝛽3Treat2 + 𝑟𝑡𝑖 (22)

Here we drop the traditional intercept (𝛽0) and model the effect of each
group using an absolute coding scheme (we could alternatively drop 𝛽1
nd use a reference scheme; McNeish and Kelley, 2019). This has the
owerful effect of removing group differences in the conditional mean
f 𝑦𝑡𝑖 based on group (which is exactly what we do with our group
redictors in the first example and why we include it). However, the
ixed-effect approach can take this idea even further by removing all
roup differences in the effect of other predictors of interest by use of
nteractions. So, if we were to include time as a predictor now, and
anted to assess the effects of each group, the model expression would

ake the following form (see code examples for implementation).

𝑡𝑖 =𝛽1Cntrl + 𝛽2(Cntrl × Time) + 𝛽3Treat1 + 𝛽4(Treat1 × Time)+
𝛽5Treat2 + 𝛽6(Treat2 × Time) + 𝑟𝑡𝑖

(23)

Here we must include a new product term for each group in order to
model the effect of time within that group. You can see how this fixed-
effect approach can easily get quite verbose with the addition of new
predictors or in cases with many more groups. As such, this approach

42 To echo an earlier footnote, this practice is likely not ideal for capturing
he full range of sex and/or gender effects, but the constraints of current
atasets mean that it is often done in practice.
43 The degree of redundancy is determined by the intra-class correlation of
bservations within a unit.
44 Alternative approaches might involve cluster-mean centering predictors

see Hamaker and Muthén (2020) for a more detailed exposition of these
18

ethods).
may not be ideal for cases where we wish to model many groups or
where groups are small (e.g., kids nested within families being a good
example of both issues). However, the fixed-effect approach is likely
best suited for situations where the higher-level unit is more a practical
feature of data collection rather than of particular theoretical interest.
Canonical examples of this might be large, multi-site studies where data
collection occurs in proximity to participating universities (e.g., ABCD)
and school-based assessments in a local community, or where we
have an exhaustive countable list of groups like countries or religious
groups. In the former cases, we are less interested in generalizing our
findings specifically to some population of assessment sites per se (we
want to generalize to the population of people, not sites), but we do
want to control for site-to-site differences in a whole host of factors
(e.g., recruitment/implementation strategies, scanner features, etc.). In
the latter, we have the full population of groups and we can make valid
inference to them directly. Under these circumstances, the fixed-effects
approach is well-suited because it removes all sources of variance due
to group differences without requiring us to know each of the relevant
factors that cause the differences between groups, and inferences are
restricted to the groups we observe directly rather than generalizing to
a larger population (McNeish and Kelley, 2019).

The random-effect approach, exemplified in the MLM,45 takes a
different approach to nested data, which allows for some desirable
inferential advantages at the price of additional assumptions. A key
assumption is that groups we observe in our data are random draws
from some larger population of groups we might have observed if we
were to perform the study repeatedly (McNeish et al., 2017). Nesting
within families or individuals (for longitudinal data) are good examples
of groups that might fit this assumption; we are unlikely to get the exact
same groups if we were to re-sample (in contrast to something like
assessment sites or religious groups where we would expect to draw
the same groups again). Another assumption we make with random
effects is that the unit-specific effects are normally distributed in the
population. This typically requires a larger number of groups than we
would typically use with a fixed-effect approach, although random-
effects models can be fit with smaller numbers of clusters if appropriate
care is taken (McNeish and Stapleton, 2016). While random-effect
models are broadly popular in the behavioral and brain sciences, some
have argued that the additional assumptions, which when violated lead
to biased effects, are not warranted in many applications and advocate
for other, distribution-free approaches (McNeish et al., 2017).

3.4.2. Nesting versus cluster correction
When higher-level nesting is present in longitudinal data (e.g., re-

peated measures within kid within family), it is a natural inclination to
default to the MLM (or MEMs more generally). More recently, retaining
the SEM framework has become more popular through the multilevel-
SEM (MLSEM) approach (Muthén, 1989; Preacher et al., 2010), al-
though the cluster-level sample size requirements are large Hox and
Maas, 2001. However, alternatives do exist for correcting, rather than
modeling, higher levels of nesting that may be of interest. For instance,
cluster-corrected standard errors account for the dependence in the
data when performing inferential tests (see here for examples). This
correction approach may be a viable alternative to formal nesting under
reasonably common conditions where we have higher levels of nesting
and do not wish to ignore it, but we do not have substantive hy-
potheses about causal relationships at that higher level McNeish et al.,
2017. In our example, we would almost certainly wish to account for
within-family similarity when modeling adolescent trajectories of risky
behavior. However, we might have no hypotheses about predictors that
influence family-level factors. In this case, the nested structure at the

45 While not as easily apparent, the LCM accommodates the nesting of
observations within individuals in an equivalent way to the MLM growth
model (Curran, 2003).
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family level is more of a nuisance we are trying to control for, and
might not be worth the additional assumptions of modeling a random
intercept of family McNeish et al., 2017; McNeish and Wentzel, 2017.
The correction approach may be especially useful for situations where
the random effect structure is already quite complex and higher-level
variance components are likely to be relatively small — and therefore
challenging to estimate.

4. Conclusions

And another thing...no, we promise this is the end. The choice of
modeling approach for longitudinal data is a complex one; any one of
the sections we outlined here could (and indeed are) be the subject of
their own specialized primer. From the coding of time to dealing with
clustering among observations, we have seen the various strengths and
limitations of the four modeling frameworks and hopefully provided
guidance for researchers wishing to apply these models in their own
substantive research.

4.1. Model fitting versus model planning

In much of the primer, we discussed different modeling options
with the implicit assumption that the primary audience for this primer
is someone who has data and wants to know what to do with it.
However, we would highlight the role that all of the considerations
and comparisons we explored here can and should play in informing
future longitudinal data collection. By their nature, longitudinal studies
simply take a lot of time; therefore, having a well-reasoned idea of
which modeling framework will best test the theoretical question of
interest should affect how data are collected — ideally to maximize
the power of the model to give you a meaningful answer. For instance,
if we were testing a theory that suggests that two variables co-develop
over time, we would likely want to choose a more consistent assessment
schedule to maximize our ability to use SEM models that more easily
handle multivariate outcomes. By contrast, if we needed to test a theory
which posits a highly-nonlinear developmental trajectory, we likely
want to use an accelerated design to achieve enough age heterogeneity
to fit a complex piecewise or GAMM model. Having a concrete idea
about the modeling options available before data collection allows us to
match models to theory rather than having to accommodate suboptimal
data structures at the modeling stage.

4.2. Revisiting aims

Overall, we aimed to provide researchers with a heuristic system
of guideposts (Aim 1) for selecting among competing models to take
advantage of the advanced longitudinal modeling approaches devel-
oped across many disciplines to best test their developmental theory.
By necessity, we have likely smoothed over additional complexity and
left out yet more considerations that could be raised in model selec-
tion for repeated measures data, however, we also provide extensive
reference to prior work (Aim 2), with a focus on both the foundational
quantitative methodological development work and practical examples
of longitudinal modeling in developmental neuroimaging data (and an
associated codebook companion; Aim 3). With these tools, we hope to
not only equip researchers with the tools and knowledge necessary to
apply longitudinal models but also to shape decisions for subsequent
longitudinal data collection with specific models in mind that will
power future discoveries concerning the mechanisms of change across
development.
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