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ABSTRACT

While it is well understood that the brain experiences changes across short-term experience/learning and long-term development, it is unclear how these two
mechanisms interact to produce developmental outcomes. Here we test an interactive model of learning and development where certain learning-related changes
are constrained by developmental changes in the brain against an alternative development-as-practice model where outcomes are determined primarily by the
accumulation of experience regardless of age. Participants (8-29 years) participated in a three-wave, accelerated longitudinal study during which they completed a
feedback learning task during an fMRI scan. Adopting a novel longitudinal modeling approach, we probed the unique and moderated effects of learning, experience,
and development simultaneously on behavioral performance and network modularity during the task. We found nonlinear patterns of development for both behavior
and brain, and that greater experience supported increased learning and network modularity relative to naive subjects. We also found changing brain-behavior
relationships across adolescent development, where heightened network modularity predicted improved learning, but only following the transition from adolescence
to young adulthood. These results present compelling support for an interactive view of experience and development, where changes in the brain impact behavior

in context-specific fashion based on developmental goals.

1. Introduction

The brain is a dynamic system capable of reshaping itself across time
to adapt to its external environment. For some developmental processes
(e.g., cognitive control or risk-taking; Casey, 2015; or socioemotional
development; Blakemore and Mills, 2014), these changes unfold across
long time horizons (e.g., months or years). However, functional devel-
opment does not require years, or even months, to show measurable
changes. Indeed, a broad literature has demonstrated that brain func-
tion rapidly adapts to task demands and feedback to support skill acqui-
sition or goal-directed behavior (e.g., Daw et al., 2006; Bassett et al.,
2011; McCormick and Telzer, 2017a, 2017b, 2018; Telesford et al.,
2017; Gerraty et al., 2018). However, it remains unclear to what ex-
tent these short-term, learning-related changes in brain activation over-
lap with the long-term, maturational plasticity seen across years and
decades of development (Galvan, 2010). Here, we test two potential ex-
planations for how experience and development interact across time to
explain changes in learning performance and the functional brain sys-
tems that support that performance across time. To probe these interac-
tions, we adopt a novel application of longitudinal modeling that allows
us to consider changes across minutes, years, and the course of devel-
opment simultaneously. This approach offers an integrated perspective
of learning and development as co-dependent processes of neural and
behavior plasticity which interact across time.
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While traditionally thought of as a period of vulnerability
(Steinberg et al., 2008; Casey et al., 2008; Shulman et al., 2016),
adolescence is also a period associated with increases in flexible be-
havior and the capacity to learn from feedback in the environment
(Johnson and Wilbrecht, 2011; Crone and Dahl, 2012; Casey, 2015;
Vigilant et al., 2015), with neural changes associated with age support-
ing increased learning (Van Duijvenvoorde et al., 2008; Peters et al.,
2016; McCormick and Telzer, 2017a; Peters and Crone, 2017). In gen-
eral. the ability to learn and engage in other complex cognitive tasks
(Casey et al., 2005; Luna et al., 2010), improves with age through the
first decades of life. However, this co-occurrence does not by itself im-
ply that maturation is necessary for the age-related improvements in
learning seen during development. With increased age also comes more
experience and practice at skills needed to support task performance.
Under this view, development involves the accumulation of practice or
training of neural systems, and the neural mechanisms for this process
should closely resemble those involved in short-term learning. In con-
crete terms, this would imply that developmentally younger individuals
can be trained to perform as well as older individuals given sufficient
practice.

In contrast, an interactive view of learning and development would
suggest that certain kinds of neural changes in response to learning are
constrained by developmental changes in the brain. In other words, it
should be practically impossible to train a child to perform at adult lev-
els because they have not experienced the maturational changes in the
brain necessary to support that performance. This would suggest that
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certain kinds of neural changes in response to learning will be relatively
unique to older individuals. These two alternative accounts are not mu-
tually exclusive, since training studies in younger individuals clearly
demonstrate that there is some capacity to improve cognitive perfor-
mance and shift brain function even in the maturing brain (Jolles and
Crone, 2012). However, the first explanation of how learning and devel-
opment interact would predict that this capacity to train should be quite
extensive, whereas the second explanation would predict that biologi-
cal maturation imposes stricter limitations on the ability to train young
individual to “adult” levels of performance. It is important to note, how-
ever, that these limitations may not be maladaptive, but rather serve
some other developmental function where “immature” brain states or
behavioral performance are important for flexible learning and adapta-
tion (e.g., Johnson and Wilbrecht, 2011; Jolles and Crone, 2012; Crone
and Steinbeis, 2017; McCormick and Telzer, 2017a).

A major challenge in modeling experience and development simulta-
neously is that in real data, they are often confounded (Bell, 1953; Jolles
and Crone, 2012; Telzer et al., 2018) in developmental models. In lon-
gitudinal studies which use a cohort-sequential (or panel) design, where
individuals are repeatedly assessed at the same ages, older participants
are also more-experienced participants (both in life and practice in the
specific measures of interest). In neuroimaging contexts, these experi-
ence effects can confound developmental effects in a number of ways,
including reducing anxiety about the scanner environment, changing
baseline conditions (the “task B” problem), or reduce errors on tasks
through familiarity rather than change in underlying ability (Jolles and
Crone, 2012; Telzer et al., 2018). Fortunately, we can leverage an alter-
native, the accelerated longitudinal design, to address these challenges.
In accelerated longitudinal studies, individuals vary in the age of first as-
sessment and are followed longitudinally thereafter. By adopting this de-
sign, we can de-couple experience from age (or other measure of devel-
opmental stage) sufficiently to successfully model the accumulation of
experience and developmental maturation simultaneously (McCormick,
preprint).

The current study tests the two competing hypotheses of how expe-
rience and development interact to drive neural plasticity during learn-
ing. Participants across a wide age range (8-29 years) participated in a
three-wave, accelerated longitudinal neuroimaging study during which
they completed a feedback learning task. By leveraging the acceler-
ated longitudinal design and a novel extension of mixed-effects models
(McCormick, preprint), we differentiate between three temporal levels
of neural plasticity: 1) short-term practice-related changes within a scan
session (within-individual) across blocks of feedback learning; 2) long-
term changes within individuals, across measurement occasions (i.e.,
waves); and 3) the mixed (i.e., within- and between-individual) effect
of changes associated with age. By considering these three levels in the
same model, we can partition effects at each level. (1) Within-session
changes reflect how brain and behavior adapt during learning the task
structure, (2) between-session changes reflect changes due to experi-
ence after repeated exposure to the task and testing environments, (3)
while age reflects the developmental effect. Importantly, including ef-
fects at the second level allows us to de-confound age and experience,
giving a more reliable estimate of the developmental effect. Because
learning is an integrative process, involving the interactions between
many brain regions (Bassett et al., 2011; Gerraty et al., 2014, 2015;
McCormick and Telzer, 2017a; Gerraty et al., 2018; McCormick, Gates,
& Telzer, 2019), we test this developmental model in the context of
brain networks. Specifically, we model the interaction of practice, expe-
rience, and development effects on network modularity. Modularity is
a measure of the degree of network segregation into distinct functional
units (Bullmore and Bassett, 2011). Higher levels of modularity in brain
networks predicts increased learning (Bassett et al., 2011; Ellefsen et al.,
2015) and working memory (Braun et al., 2015) performance in adults.

Our analytic approach to addressing these questions involved several
steps. First, we fit mixed-effects models with only linear and quadratic
effects of age on behavioral performance and network modularity dur-
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ing learning separately (Peters et al., 2016; Peters and Crone, 2017)
for comparison to more complex models. We then included predictors
of within- and between-session change as main effects to consider the
unique effects of practice, experience, and development, before fitting
a model that included interaction terms between our predictors. This
third model allowed us to probe how the effects of the lower-level pre-
dictors change across development in a continuous fashion. Finally,
we estimated a brain-as-predictor model where we probed how brain
states (e.g., high versus low modularity) differentially predicted learn-
ing performance across practice, experience, and development. This fi-
nal model tests a core difference between the two explanations of devel-
opmental improvement in learning performance. In the development-as-
practice view, network modularity should predict learning performance
consistently regardless of when in the developmental trajectory (i.e.,
there is no moderation by age). This is contrasted by the interaction
view of development and experience, where we would expect that mod-
ularity would predict performance differentially depending on age.

2. Methods
2.1. Sample

A total of 299 participants (ages 8-29 years; 153 female) partici-
pated in a 3-wave, accelerated longitudinal MRI study. Participants were
scanned every 2 years, spanning a 5-year period (Fig. 1). At wave 1, 28
participants were excluded for a number of factors including not com-
pleting the MRI session (N = 4), excessive movement during the scan
session (>3 mm relative motion in any direction/rotation) (N = 22),
ADD diagnosis disclosure (N = 1), and reported medicine use (N = 1), re-
sulting in a final sample of 271 participants at the initial data collection
(140 female; Mg,=14.17, SD=3.63, range=8.01-25.95 years). At wave 2
(2 years later), 254 participants were scanned (33 could not be scanned
due to braces; 11 declined to return). Of the scanned participants, an
additional 21 were excluded (12 for motion; 2 for preprocessing errors;
5 for T2 artifacts; 1 for medicine use; 1 for ADD diagnosis), leaving
a final sample of 233 participants (121 female; M,,=16.15, SD=3.62,
range=10.02-26.61 years). During the final wave (2 years later), 243
participants were scanned (11 could not be scanned due to braces; 45
declined to return). Of these, 11 were excluded (3 did not complete MRI
session; 4 for motion; 2 for processing errors; 1 for medicine use; 1 for
ADD diagnosis), for a total final sample of 232 participants (121 female;
Mg,=18.15, SD=3.68, range=11.94-28.72 years). Across the dataset,
183 participants had data at all three waves, 78 participants had data
at two waves, 31 participants had data at only one wave, and 7 were
excluded at all three waves. A total of 736 scans were included for final
data analyses. When considered at the trail level, these scans yielded
4799 observations for modeling.

IQ scores were measured at the first two waves of data collection, us-
ing the WISC-III (for participants < 16 years; Ny, = 195; Ny, = 119) or
WAIS-III (for participants > 16 years; Nyy; = 76; Ny, = 114). All partic-
ipants were within the normal range at wave 1 (M = 109.8, SD=10.34,
range=80-142.5) and wave 2 (M = 108.3, SD=10.27, range=80-147.5).
Further details and the distributions of the descriptive variables are
available in the supplemental material.

2.2. Feedback learning task

Participants completed a feedback learning task during an fMRI ses-
sion (Peters et al., 2014, 2016). On each trial, participants saw a screen
with three empty boxes and one (out of a possible set of three) stimulus
underneath (Fig. 2). Participants were told that each stimulus within a
given set had a corresponding correct location among the empty boxes
and that their goal on the task was to appropriately sort each stimulus
into its location. For each stimulus-location choice, participants either
received positive (a “+” sign) or negative (a “-” sign) feedback based
on their choice. Positive feedback indicated correct stimulus placement,
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Fig. 1. Structure of repeated measures within
the accelerated longitudinal design. Partici-

= pants are ordered in ascending order based on
N their age at wave 1. Sex is denoted by separate
colors.
Sex
Female
< Male
+

Stimulus + Response‘
2500 ms

Jitter
500-6500 ms

Fig. 2. During the Feedback Learning task, participants learned the correct placement of each stimuli (e.g., the elephant) through feedback. Participants received

either positive or negative feedback on each trial.

while negative feedback indicated incorrect placement. Each stimulus
within a set associated with a unique, deterministically correct location.
Stimuli within a set were presented in pseudorandom order, constrained
such that no stimulus within a set was present more than twice in a row.
After a maximum of 12 trials per block, or after all three stimuli within
a set were correctly placed twice (indicating that all locations were suc-
cessfully learned), stimulus sets were swapped out for a new set with
three new stimuli. Participants saw a total of 15 blocks of 3-stimuli sets
(for a maximum possible of 180 trials) at waves 1 and 2, and 10 blocks
(maximum possible 120 trials) at wave 3. Prior to the MRI session, par-
ticipants practiced three example sets of stimuli. Each trial consisted of
the following: 1) a 500-ms fixation cross, 2) stimulus presentation for
2500 ms while participants made location decisions, and 3) feedback
presentation for 1000 ms. Trials were separated by intervals jittered
based on OptSeq (Dale, 1999), with durations that varied between 0
and 6 s.

2.3. Behavioral analyses

2.3.1. Task metrics of behavior

Our primary metric of task performance was the learning rate par-
ticipants displayed in forming correct stimulus-location associations. To
calculate learning rate, we distinguished between two phases of task
performance: the learning and the application phase (Peters et al., 2014,
2016). The learning phase was defined as trials where the correct loca-
tion for a given stimulus was still unknown, and participants needed
to rely on trial-and-error or hypothesis testing to correctly place the
stimulus. Trials in the learning phase could result in either positive (in-
dicating a future stay strategy) or negative (prompting a future shift
strategy) feedback. In contrast, the application phase was defined as
trials where the correct location for the presented stimulus is already
known (as established by an earlier learning trial) and participants cor-
rectly place that stimulus again. Learning rate was calculated as the



E.M. McCormick, S. Peters, E.A. Crone et al.

proportion of trials in the learning phase where feedback was correctly
applied in the following trial involving the same stimulus (either as re-
peated placement following positive feedback or as altered placement
following negative feedback) out of all the trials during the learning
phase.

2.3.2. Linear mixed-effects model

To test our developmental/experience interaction model, we fit a lin-
ear mixed-effects model to participants’ learning rate data. We followed
a model-building procedure similar to the one used in previous work
in this sample (Peters et al., 2016; Peters and Crone, 2017). This pro-
cedure involved a build-up approach where we tested main effects and
then interactions of time to establish the optimal developmental form
before bringing in additional predictors. We fit a random effects ANOVA
model with a random intercept which served as a comparison for subse-
quent models. For descriptive purposes at the random effects level, we
fit a three level model where blocks were nested within wave and then
within person, however for comparison with future models, we also fit a
two level model where wave and age were included at level 1. To com-
pare across levels of change, we constructed a model using the Ime4
software package through R (version 1.1-21; Bates et al., 2015), where
stimulus blocks (N = 1-max 15) and wave (N = 1-3) were nested within
individual, and age was included as a time-varying covariate. Because
wave (i.e., repeated exposure to the task) was a predictor of interest,
we did not nest with respect to wave since that would result in a vari-
able that acts as both a nesting factor and linear effect of interest. We
included interactions between wave, age, and blocks. To capture more
complex changes in behavior between blocks of the task, we utilized
piece-wise regression at level 1 (Flora, 2008; Li et al., 2001), including
predictors which model the linear effects across the first and second half
of the task separately. This model resulted in the following equation:

Reduced Form:

Learning Rate;; = yoy + vioFirst Hal f;; + yy9Second Hal f;; + y30W ave;;
+ y40Age,~j + ySOAgejz. + ygo First Half,-j * Wave;;
+7r70Second Half;; « Wave;; + ygo First Hal f;; * Age;;
+7v9oSecond Half;; x Age;; + v\ First Hal f; * Ageizj
+r10Second Half;; Ageizj +7120W ave;; * Age;;

2
+7130W ave;; * Age,.j +ug; +ry;

While previous work has discouraged using wave as a predic-
tor in longitudinal models (instead using precise age; see Mehta and
West, 2000), here we draw a meaningful distinction between wave and
age. We would expect changes in behavior after each subsequent expo-
sure the task environment (Telzer et al., 2018), which due to the sam-
pling method in accelerated longitudinal designs is disassociated with
age to some degree because a large age range is represented at each
wave.

2.4. fMRI data acquisition and processing

2.4.1. MRI data acquisition

Scans across all three waves were acquired using the same
Philips 3T MRI scanner, utilizing identical scan settings. The Feed-
back Learning Task included T2*-weighted echoplanar images (EPI;
slice thickness=2.75 mm; 38 slices; sequential acquisition; TR=2.2 s;
TE=30 ms; FOV=220 x 220 x 114.68 mm). Additionally, struc-
tural images were acquired, including a high-resolution 3D T1-
FFE anatomical scan (TR=9.76 ms; TE=4.59 ms; 140 slices; voxel
size=0.875 x 0.875 x 1.2 mm; FOV=224 x 177 x 168 mm; flip angle=8).
Prior to undergoing the scan procedure, participants were introduced to
the scanner environment (e.g., space and noises) through a mock scan
session.
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2.4.2. fMRI data preprocessing and analysis

Preprocessing and analyses utilized a suite of tools from FSL FMRIBs
Software Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/), Steps taken
during preprocessing included skull stripping of all images using BET;
and slice-to-slice motion correction of EPI images using MCFLIRT; co-
registeration in a two-step sequence to the high-resolution T2-weighted
and T1-FFE anatomical images using FLIRT in order to warp them into
the standard stereotactic space defined by the Montreal Neurological
Institute (MNI) and the International Consortium for Brain Mapping;
and the application of a 128 s high-pass temporal filter to remove low
frequency drift within the time-series.

2.4.3. Nuisance regressors

Prior to modeling the fMRI data further, we took several steps to
reduce the influence of motion. Motion, as measured by framewise dis-
placement (Power et al., 2012), was minimal across the sample (mean
across participants = 0.12 mm FD; max = 0.77 mm; average percent-
age of volumes with > 0.3 mm FD = 4.95%). We also controlled for
8 nuisance regressors in the GLM and time-series analyses: 6 motion
parameters generated during realignment and the average signal from
both the white matter and cerebrospinal fluid masks. Previous work (see
Ciric et al., 2017) has shown that these strategies reduce the influence
of motion on functional connectivity analyses.

2.4.4. Graph construction

We then utilized a graph theoretical approach to investigate how
networks in the brain changed across levels of practice, experience,
and development. Using a subset of the BigBrain parcellation scheme
(Sietzman et al., 2020), an atlas comprised of 300, 5-mm sphere parcels
from cortical and subcortical regions, we extracted functional timeseries
data for each block (15 in total) in order to model changes in network
structure across time during the task. We chose to examine network fea-
tures between regions with theoretical relevance to task performance
during learning. This resulted in 147 regions including those in the
cingulo-opercular (14), default mode (55), fronto-parietal (27), salience
(14), ventral (9) and dorsal (14) attention, hippocampal (6), and reward
(8) sub-networks (for the relevant ROI coordinates on a whole-brain
projection, see Figure S1). Selection of these networks were guided by
those regions engaged in the feedback learning task in previous research
(Peters et al., 2016; Peters et al., 2016) or classically engaged during
learning and decision-making (Daw and Shohamy, 2008; Sadaghiani
and D’Esposito, 2014; McCormick and Telzer, 2018a; McCormick et al.,
2019). This subset was chosen to balance including enough regions of
interest with the challenges of computing whole-brain networks on rel-
atively short timeseries. Regions were included or excluded as a group
based on their network label (e.g., all fronto-paretial regions were in-
cluded while all visual regions were excluded). As a follow-up sensitiv-
ity analysis, we re-ran all analyses with modularity calculated on the
whole-brain network (whole-brain modularity values are available in
the posted data file; https://osf.io/62gwz/). Results remained substan-
tively unchanged and we retained the subset to maintain fidelity to the
original analysis plan.

To extract, we constructed a task regressor made from the onset
and duration of each block of stimuli convolved with an HRF function.
These regressors were multiplied with the entire timeseries extracted
from ROIs in order to give a set of time-series files for each individual
at each wave. Block durations (M = 45.32 s; SD = 3.26; range = 37.27-
60.23 s) were comparable to approaches used in dynamic functional
connectivity analyses (approximately 30 s; Shirer et al., 2012; Gonzalez-
Castillo et al., 2015). Correlation matrices were constructed by comput-
ing the zero-lag cross-correlation between each ROI. Graph metrics were
calculated across a range of costs (5-20% in 5% increments; Cohen and
D’Esposito, 2016). We utilized the standard community assignment for
distinguishing within- versus between-network edges (Sietzman et al.,
2020).
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Fig. 3. Probing Interactions with Age. Four distinct ages were chosen to probe interactions with age, including during early adolescence (12, [~ —1SD]; red), middle
adolescence (16, [~ mean age], green), late adolescence (20, [+1SD]; blue), and young adulthood (25, [~ +2SD], purple). Bar height represents the proportion of
observations at that level. Rug plot hashes (below x-axis) represent individual observations.

2.4.5. Graph metric

For our measure of brain development, we calculated network mod-
ularity, or the degree to which communities within the brain network
are segregated. Modularity is computed as the relative number of edges
between nodes of the same community compared to the number of to-
tal edges within the brain graph. We calculated modularity (Q*) using
positive and negative weighted edges as:

0" = 21;/+ Z,: (wfj ‘93)5(’""’"’1')

— m 2 (w,_/ —el._j)é(mi,mj)

ij

where w is the number of positively weighted edges and w™ is the num-
ber of negatively weighted edges. The e;; term represents the expected
number of edges between two nodes i and j, and the 6(m;, m;) term is 1
if the nodes i and j are in the same module and 0 if they are not in the
same module. Notice that negatively weighted edges are given less influ-
ence than positively weighted edges in computing modularity (Rubinov
& Sporns, 2011).

2.5. Developmental model

We then utilized the same multi-level modeling approach used for
the behavior to model change in brain networks across blocks, waves,
and age:

Modularity;; = yo + vioFirst Half;; + yygSecond Half;; + y3pW ave;;
+v40A8€;; + ]/50Agejz. +veoFirst Hal f;; « Wave;;
+770Second Half;; « Wave;; + ygo First Hal f;; = Age;;
+7v99Second Half;; x Age;; +y\goFirst Hal f; * Ageizj
+¥1105econd Halfij * Age,.zj + y,zoWave,-j * Age,-j

2
+7130W ave;; * Ageij +ug; +ry;

2.6. Probing interactions

To better understand potential interaction effects involving age in
the models of behavior and brain, we probed the effects at four dis-
tinct ages (Fig. 3). Ages were chosen to be evenly spaced (approxi-
mately standard deviation distances within the sample) and roughly
correspond to different developmental periods including early, middle,
and late adolescences, as well as young adulthood (e.g., Shulman et al.,
2016). Interaction effects in the model are continuous across the age
range and therefore leverage information across the sample. However,
due to lower coverage of observations at later ages, the simple slope esti-
mates when probing the interaction at these levels have correspondingly
larger standard errors.

3. Results
3.1. Descriptives and age-only growth models

Before formally fitting models to the data, we assessed descriptives
of both learning rate and network modularity as a function of wave and
age (taking the mean of within-session data). Connected data points rep-
resent the same individual across time and waves are labeled with differ-
ent colors (Fig. 4A & B). As reported earlier (Peters and Crone, 2017),
learning rate was high overall with late adolescents performing near
ceiling, and either leveling off or declining for older participants. Al-
though not constrained in the same way as learning performance at up-
per values, neural network modularity appears to increase at earlier ages
and declining at later ages (see Supplemental for formal regions of sig-
nificance analysis for all models). As our first model building step, we
fit a relatively simple model by including linear and quadratic effects
of age to both learning rate and network modularity. Predicted values
of each measure were obtained from the mixed-effects model (Fig. 4C
& D; see Table 1), confirming these trends. However, this simple model
neither captures within-session practice-related change, nor does it dis-
aggregate within-person changes due to experience (i.e., across waves)
and between-person changes due to maturation (i.e., across age). We
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Table 1
Model output from age-only models.

Learning Rate

Network Modularity

Predictors Estimates SE P-Value df Estimates SE P-Value df
Intercept 0.937 0.004 <0.001 359.604 0.994 0.011 <0.001 361.688
Age 4 0.277 0.023  <0.001 1003.133  0.275 0.023  <0.001 1992.711
Age? 4 -0.140 0.021 <0.001 1924.892  -0.209 0.020 <0.001 3523.698
Random Effects

o2 0.010 0.055

o0 0.002 |, 0.030 |p

ICC 0.18 0.35

N 297 p 297 p

Observations 4799 4799

Marginal R? |/ Conditional R>  0.065 | 0.236 0.075 | 0.402

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects reported. ¢2 = level 1
random effect. 7y, = higher level random effect (effect specified by subscript). ICC = Intraclass correlation. N = number

of units at each level.

next formally tested these effects using the developmental model speci-
fied above.

3.2. Behavioral improvements in learning performance

We began by fitting an unconditional random effects ANOVA model
(i.e., a random intercept at each level) to determine the distribution of
variance across the three levels of the model (level 1 = within-session;
level 2 = waves; level 3 = individual). Results indicated that the major-

ity of variance in learning rate was between trials within the same scan
session (68.7%), an additional 19.3% of the variance was between scan
sessions within the same individual (i.e., change across waves), and the
remaining 11.9% variance was accounted for by between-individual dif-
ferences in overall learning performance (see Table 2 for full details).
However, to establish a baseline for future models, we also fit a two
level random effects ANOVA model where level 1 and 2 are collapsed
(see Table 2).
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Model output from random effects ANOVA models.
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3-Level Model

Learning Rate

Network Modularity

Predictors Estimates ~ SE P-Value df Estimates ~ SE P-Value df
Intercept 0.927 0.003 <0.001 256.681 0.949 0.012  <0.001 284.150
Random Effects
o2 0.009 0.048
Too 0.002 1p:wave 0.014 p.wave

0.002 p 0.030 |p
ICC 0.31 0.49
N 297 p 297 p

3 Wave 3 Wave
Observations 4799 4799
Marginal R? | Conditional R2  0.000 / 0.313 0.000 / 0.486
2-Level Model Learning Rate Network Modularity
Predictors Estimates ~ SE P-Value df Estimates ~ SE P-Value df
Intercept 0.925 0.003  <0.001 271.214 0.946 0.012  <0.001 289.668
Random Effects
o2 0.010 0.056
Too 0.003 |p 0.037 |p
ICC 0.22 0.40
N 297 p 297 p
Observations 4799 4799
Marginal R? |/ Conditional R>  0.000 / 0.218 0.000 / 0.398

Note: All effects rounded to the third decimal place for display purposes. 62 = level 1 random effect. 7o, = higher level
random effect (effect specified by subscript). ICC = Intraclass correlation. N = number of units at each level.

Table 3

Model output from main effects-only models.

Learning Rate

Network Modularity

Predictors Estimates  SE P-Value df Estimates ~ SE P-Value df
Intercept 0.927 0.004 <0.001 717.508 0.987 0.013  <0.001 520.937
First Half ;4 0.025 0.016 0.113 4473.435  0.088 0.013  <0.001  4491.297
Second Half g4 0.022 0.016  0.151 4473.468  0.121 0.013  <0.001 4491.319
Wave gy 0.023 0.018 0.198 1205.547  -0.004 0.019 0.845 694.861
Age g 0.250 0.31 <0.001  299.628 0.285 0.039 <0.001 311.080
Age? 4 -0.136 0.021 <0.001 1941.031 -0.209 0.020 <0.001  3747.423
Random Effects

o2 0.010 0.051

Too 0.002 |, 0.030 p

ICC 0.18 0.37

N 297 p 297 p

Observations 4799 4799

Marginal R? | Conditional R? 0.060 / 0.232 0.112 / 0.441

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects reported. o2 = level 1
random effect. 7, = higher level random effect (effect specified by subscript). ICC = Intraclass correlation. N = number

of units at each level.

3.2.1. Separating effects of age and wave

Next, we fit a mixed effects model with fixed predictors of learn-
ing rate at each level to assess the separable effects of age and wave
on learning rate. Importantly, wave and age were sufficiently decou-
pled in this model (r = 0.397, variance inflation factor = 1.19, SE in-
flation = 1.08 times), and all predictors were centered. In this model
neither effect of the within-session practice predictors were significant.
This suggests that there was no total systematic change in learning rate
within a scan session net the effects of wave and age, nor was there a
significant within-person effect of wave. In other words, neither within-
session practice or between-session experience related to increased per-
formance when accounting for the age-related change. However, indi-
viduals showed significant linear (§ = 0.250, SE = 0.031, p < .001)
and quadratic (§ = —0.136, SE = 0.021, p < .001) effects of age on
learning rate. All results are reported as standardized effects (Table 3).
A likelihood ratio test suggests that this model offers an improvement
over the unconditional model (A = —158.7; ;(3,. = 168.71, df = 5,
p < .001).

3.2.2. Learning rate improvements show interactions across levels of time
Finally, we tested the interactive model of learning and development
for participants’ learning rates. To do so, we added two-way cross-level
interaction terms to the previous model. Three-way interactions were
explored but were not found to be significant and so the model with
two-way interactions was retained. All predictors were centered to cre-
ate interaction terms which were uncorrelated with the main effects
and to facilitate the interpretation of main effects in the presence of
interaction terms (Aiken and West, 1991). There was a significant posi-
tive interaction of wave and the quadratic effect of age on learning rate
(B = 0.083, SE = 0.021, p < .001) such that at each later waves, the
quadratic decreases lessen. To probe this interaction, we plotted mean
within-session level increases in learning rate across age for each wave
(Fig. 5). Results suggest that without repeated exposure to the task (i.e.,
experience) there are predicted decreases in learning performance at
younger ages (red trajectory), but that practice helps compensate and
cause performance to level off instead (green and blue trajectories). The
quadratic effect where wave is coded as zero (i.e., wave 2) reflects the
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Experience Moderates the Effects of Age on Learning Performance

Neurolmage 229 (2021) 117784

Fig. 5. Increased Experience Impacts Learn-
ing Trajectories. Compared with first expo-

1.00- sure (red), accumulating experience (green and
blue) between waves tended to predict better
learning performance at later ages, compensat-

. ing for expected declines in performance dur-

Goel ing young adulthood.
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Table 4
Model output from interactions models.
Learning Rate Network Modularity

Predictors Estimates ~ SE P-Value df Estimates ~ SE P-Value df
Intercept 0.935 0.005 <0.001 768.901 0.997 0.014 <0.001 513.739
First Half o -0.007 0.020 0.751 4473.838  0.094 0.017  <0.001  4495.715
Second Half 0.021 0.020 0.297 4473.787 0.115 0.017 <0.001 4495.776
Wave ¢y 0.011 0.031 0.722 3143.488 —-0.044 0.029 0.131 1734.974
Age q 0.160 0.044 <0.001 650.191 0.327 0.049 <0.001 471.938
Age? 4 —-0.080 0.042 0.053 615.163 -0.261 0.047 <0.001 513.285
First Half * Wave ¢4 -0.016 0.022 0.469 4484.108 -0.036 0.019 0.058 4508.580
Second Half * Wave -0.044 0.022 0.048 4484.488 -0.022 0.019 0.244 4508.591
First Half * Age ¢4 -0.049 0.022 0.027 4466.136 0.068 0.019 <0.001 4482.736
Second Half * Age ¢4 0.025 0.022 0.252 4466.143 -0.004 0.019 0.818 4482.736
Wave * Age gq -0.038 0.024 0.111 870.145 0.002 0.026 0.947 648.001
First Half * Age? 4 0.047 0.024 0.048 4464.637 -0.027 0.020 0.182 4481.364
Second Half * Age? 4 -0.025 0.024 0.292 4464.630 -0.002 0.020 0.906 4481.360
Wave * Age? o4 0.083 0.021 <0.001 4746.733 0.057 0.018 0.001 4674.686
Random Effects
o2 0.010 0.051
00 0.002 0.030
ICC 0.19 0.37
N 297 p 297
Observations 4799 4799
Marginal R? | Conditional R2  0.066 |/ 0.239 0.126 [ 0.449

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects reported. 62 = level 1
random effect. 7y, = higher level random effect (effect specified by subscript). ICC = Intraclass correlation. N = number

of units at each level.

effects seen in the age-only model and is consistent with prior research
(Peters et al., 2016; Peters and Crone, 2017), however, by including in-
teractions with experience, we show how that total effect is influenced
by repeated exposure to the task (see Table 4 for full details). A likeli-
hood ratio test suggests that this model offers an improvement over the
main-effects only model (Apc = —22; )(jiff = 38.03, df = 8, p < .001).
In a follow-up sensitivity analysis, we found that this pattern of effects
held when including IQ as a covariate.

3.3. Changes in network modularity

Similar to the behavioral analysis, we first fit an unconditional ran-
dom effects ANOVA model to participants’ neural network modularity
data. The majority of variance in network modularity was between trials
within the same scan session (51.4%), relatively less (15.6%) of the vari-

ance was between scan sessions within the same individual (i.e., change
across waves), with the remainder (33.0%) accounted for by between-
individual differences in network modularity (Table 2).

3.3.1. Separating effects of age and wave

Next, we fit a main-effects only model with predictors including task
block, wave, and age. There were linear (f = 0.285, SE = 0.0.39, p <
.001) and quadratic (f = —0.136, SE = 0.021, p < .001) effects of age,
such that network modularity tended to increase early in adolescence
and level off and decrease across late adolescence and young adult-
hood. Additionally, modularity increased across blocks within waves
(i.e., practice) across both halves of the task (first half: p = 0.088,
SE = 0.013, p < .001; second half: g = 0.121, SE = 0.013, p < .001).
There was no independent effect of wave on network modularity. This
suggests that while modularity tends to increase within-session across
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Interactions with Age Predicting Network Modularity

A Experience Moderates the Effects of Age on Network Modularity
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Fig. 6. Experience and Age Impact Brain Network Organization. A) Accumulating experience (green and blue) across waves predicts increased network modularity
compared with first exposure (red), however these differences only emerge during the transition from adolescence to young adulthood. B) Increased age predicts
greater positive gains in network modularity across blocks in the first half of the task.

the task and with older individuals, there is no independent effect of
repeated exposure to the same task environment (Table 3). As expected,
this model offered improvements over the random effects ANOVA model
(Aprc = —476.3; Xfiff = 486.3, df = 5, p < .001).

3.3.2. Network modularity shows interactions across levels of time

We next fit the interactive model of development to the network
modularity data. Similar to the model with learning performance, there
was a significant interaction of wave and the quadratic effect of age on
network modularity (f =0.057, SE = 0.018, p = .001; Table 4). When
probed (Fig. 6A), there was a similar compensatory pattern to the one
seen in learning performance, such that experience across waves (green
and blue) predicted positive shifts in modularity at later ages compared
with the first exposure to the task (red). Interestingly, these differences
appear to only emerge during the transition from adolescence to young
adulthood, whereas increased experience does not impact modularity at
younger ages. Furthermore, there was a significant positive interaction
of age and practice in the first half of the task (f = 0.068, SE = 0.019, p
< .001), such that older individuals showed more rapid gains in modu-
larity across the first half of the task (Fig. 6B). This model offered con-
tinued improvements over the main effects only model (A = —18.18;
Xyipp = 34.18,df =8, p <.001).
3.3.3. Predicting learning with network modularity

Finally, we tested whether network modularity predicts learning per-
formance above and beyond the effects of time. To do so, we entered net-
work modularity and interaction terms between modularity and the time
predictors into the model. In addition to similar effects of the time pre-
dictors, this model revealed a significant positive interaction between
network modularity and age (f = 0.062, SE = 0.023, p = .007; Table 5).
Probing this interaction (Fig. 7), we plotted the model-implied trajec-
tory of learning rate across age for individuals who showed relatively
low (-1 SD), mean, and relatively high (+1 SD) network modularity.
This showed that individuals who evinced relatively high network mod-
ularity (blue trajectory) tended to show higher learning rates, but only
after the transition from adolescence to young adulthood (see region
of significance analysis in Supplement for details). A likelihood ratio

test suggests that including the brain as a predictor increased model fit
(Apc = —4.1; ng =20.10, df = 8, p = .010).

4. Discussion

The contributions of experience versus development can be difficult
to tease apart, especially within a longitudinal sample (Jolles and Crone,
2012; Telzer et al., 2018) because age, experience, and practice are
confounded. To test an interaction model of experience and develop-
ment, we utilized a novel longitudinal approach to separate out vari-
ability in learning performance and brain network modularity along
different timescales: 1) within-session practice across blocks of learn-
ing, 2) within-person, across-waves, and 3) across age. Briefly, we found
that learning performance tends to improve throughout adolescence and
level off into adulthood. In contrast, network modularity appears to peak
around middle adolescence and then shows declines across young adult-
hood. However, both of these effects are moderated by the amount of
experience individuals have accumulated across waves, with more ex-
perience relating to higher performance and network modularity dur-
ing learning. When considering the brain-behavior relationships, rela-
tively higher modularity predicts better learning performance but only
at older ages, suggesting that the importance of individual differences
around developmental trends for determining behavioral outcomes may
depend on timing in development. We discuss each of these findings in
greater detail below.

4.1. Multi-Level changes in learning rate and brain networks

Even without probing cross-level interactions, a major advantage of
the models employed here is the separation of variance in the outcome
across levels of time. In the current study, we found that behavioral im-
provements in learning occur across age, but do not change systemati-
cally across waves or blocks within the task. In contrast, network mod-
ularity showed systematic within-session increases as well as positive
age effects, while showing no systematic changes across waves. While
these total effects should be interpreted with caution given the pres-
ence of higher-order interaction effects, they nevertheless highlight an
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Table 5
Model output from brain as predictor of learning performance model.

Learning Rate

Predictors Estimates  SE P-Value df
Intercept 0.935 0.005 <0.001 794.679
First Half g —-0.003 0.021  0.886 4476.805
Second Half 0.006 0.021  0.775 4482.941
Wave ¢y —-0.056 0.067  0.401 4670.922
Age g4 0.174 0.045 <0.001 718911
Age? —-0.086 0.043  0.046 679.282
First Half * Wave 4 -0.018 0.022 0415 4481.722
Second Half * Wave gy -0.040 0.022  0.072 4485.072
First Half * Age o4 -0.054 0.023  0.018 4472.145
Second Half * Age 0.005 0.023  0.822 4502.070
Wave * Age g4 -0.034 0.025 0.172 987.428
First Half * Age? su 0.044 0.025  0.073 4469.835
Second Half * Age? su -0.013 0.025 0.604 4483.426
Wave * Age? su 0.076 0.022  0.001 4754.347
Modularity g4 -0.014 0.029  0.627 4764.879
Modularity * First Half ¢4 0.006 0.021  0.786 4532.995
Modularity * Second Half g 0.044 0.021  0.044 4545.020
Modularity * Wave gy 0.061 0.061 0.317 4774.206
Modularity * Age g4 0.062 0.023  0.007 4222.697
Modularity * Age? 4 —-0.004 0.025 0.888 4389.408
Modularity * Wave * Age ¢4 0.035 0.021  0.093 4776.952
Modularity * Wave * Age? 4  —0.043 0.021 0.041 4724.872
Random Effects

o2 0.010

700 ID 0.002

ICC 0.19

N p 297

Observations 4799

Marginal R? | Conditional R>  0.071 / 0.243

Note: All effects rounded to the third decimal place for display purposes.
std = standardized effects reported. 2 = level 1 random effect. 7y, = higher
level random effect (effect specified by subscript). ICC = Intraclass correla-
tion. N = number of units at each level.

advantage of the growth model employed here (McCormick, preprint).
Controlling for the effects of repeated exposure to the task environment
allow us to be more confident that the effects of age are due to matura-
tional forces rather than comfort or familiarity with the task or scanner
environment (Bell, 1953; Jolles and Crone, 2012). Even if these effects
are not significant, as is the case here, these models allow us to check
our assumptions about the processes underlying longitudinal change.

25
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Fig. 7. Differential Impacts of Network Modu-
larity on Learning Rate By Age. At earlier ages,
increased modularity did not predict increased
learning, but this relationship emerges follow-
ing adolescence.
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4.2. Cross-level interactions between growth at different scales

More interestingly, there were significant cross-level interactions be-
tween time predictors in the models for both behavior and brain tra-
jectories. For both outcomes of interest, results supported the idea of
an interactive model of development, where the impacts of experience
change across age. For learning rate, the model recapitulated previous
findings in this task (Peters and Crone, 2017) showing that learning
rate reaches peak levels around late adolescence, and is consistent with
other findings showing improvements in learning across adolescence
(van Duijvenvoorde et al., 2008; Peters et al., 2016; McCormick and
Telzer, 2017a). This highlights that the model with growth at multi-
ple levels accommodates the same inferences made with the age-only
models. In this way, adopting the current approach offers advantages
without limiting the inferences made about developmental trajectories.
Indeed, the interaction of wave and the quadratic effect of age on learn-
ing performance reveals that changes in behavior are driven by complex
interplays between development and experience, with experience ap-
pearing to play different roles in supporting overall performance across
adolescence and young adulthood. Specifically, probing the interaction
shows that increased experience compensates for the main effect of age,
boosting behavioral performance gains further into to young adulthood.
Extensive experience (blue trajectory in Fig. 5) blunts otherwise pre-
dicted declines and stabilizes performance at the peak achieved during
middle to late adolescence. However, this experience-related improve-
ment is not universal across the developmental period considered, as
mid-adolescent performance is heightened even at first wave. This might
suggest that during adolescence, learning is universally improved, and
then individual differences become more relevant as individuals tran-
sition out of this period (see Pattwell et al., 2011 for a similar idea
in the area of contextual fear during adolescence). None of the mod-
els tested showed within-session effects on learning performance, al-
though we may have been under-powered to detect such effects given
the restraints of the task (i.e., there was a maximum of 12 trials per
block regardless of learning). Overall, these results are a powerful val-
idation of the model, converging with previous findings on the same
data while simultaneously allowing for the addition of more complex
time-dependent relationships.

Findings with the brain showed a distinct pattern of effects from
growth in learning performance. Previous work in this area has shown
developmental changes during learning in regional activation of the
fronto-parietal (Peters et al., 2016) and striatal regions (Peters and
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Crone, 2017; McCormick and Telzer, 2017a), as well as seed-based con-
nectivity with the orbitofrontal cortex (McCormick and Telzer, 2017a).
In the current study, we instead examine changes in brain network
organization during learning. Learning over short periods of time has
been shown to alter neural network organization (Bassett et al., 2011;
Telesford et al., 2017; Gerraty et al., 2018), but these processes have not
been compared with long-term changes due to maturation previously.
In the current study, we show changes in network modularity both at
the short-term within-session and long-term developmental level. In the
short term, playing repeated blocks within-session is associated with
heightened modularity between brain networks involved in learning,
and this effect across the first half of the task increases with age. This
suggests that older individuals are able to segregate (i.e., high within-
network and low between-network connectivity) the relevant networks
of regions to a greater extent than younger participants. The quadratic
total effect of age suggests that rather than a linear increase in modu-
larity across experience across waves and maturation, network modu-
larity instead decreases at later ages (Fig. 6A), with late adolescents and
young adults showing decreasingly modular networks compared with
middle-adolescents (also consistent with the age-only model (Fig. 4D).
This pattern of network connectivity evolves similarly across develop-
ment to striatal activation during learning versus application (Peters and
Crone, 2017). However, the interaction of this age effect with wave
shows an analogous effect as seen in learning performance, where ex-
perience appears to blunt expected decreases in network modularity in
young adulthood. While this compensatory effect does not counteract
the overall decreases as seen in the behavioral results, it does serve to
shift network organization toward a more adolescent-typical phenotype.
For both behavioral performance and network modularity, the pattern
of results seen here clearly support an interactive view of experience
and development, where maturation constrains the effect of experience
rather than simply serving as a form of extended practice.

Regardless of the effects of experience (i.e., wave), there appear to
be more substantial decreases in modularity compared with behavioral
performance. In the context of learning and development, this pattern
of long-term change in neural networks might have two potential ex-
planations. First, it might be that brain networks show the greatest ca-
pacity for modularity during adolescence, and this capacity supports
the heightened flexible learning (Johnson and Wilbrecht, 2011; Casey,
2015) and feedback sensitivity (Peters et al., 2016; van Duijvenvoorde
et al., 2014; McCormick and Telzer, 2017a; b; 2018b) that characterize
this developmental period regardless of practice or exposure effects. Al-
ternatively, these changes might reflect differences in how the brain per-
forms similar actions across development. For instance, high modularity
might be necessary for adolescents to achieve high performance, while
adults might not require this to the same degree. For instance, stabiliz-
ing learning performance with experience is still associated with overall
(albeit blunted) decreases in modularity during young adulthood. This
might also be consistent with an expansion-normalization theory of de-
velopment and learning (Wenger et al., 2017) where brains show initial
changes in structure and function (e.g., increased synaptic formation, in-
creased activation) that then return to baseline without compromising
behavioral performance. These hypotheses are not mutually exclusive,
and the effects probed here might suggest both that adolescent brains
support improved performance regardless of other influences (e.g., ex-
perience) and that returns to network phenotypes seen in younger ado-
lescents does not lead to a complete collapse of behavioral performance.

4.3. Changing brain-behavior relationships

While characterizing trajectories of brain and behavior separately is
informative, we also examined whether individual differences in net-
work organization might predict learning performance above and be-
yond developmental (Peters and Crone, 2017) and experiential effects,
as well as whether that relationship changed across time. Consistent
with the interaction view of development and experience, significant in-
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teractions between network modularity and time predictors in the model
revealed a significant moderation of brain-behavior relationships across
age. This means that in early adolescence, there is no effect of increased
modularity on learning performance, but that increased modularity pre-
dicts enhanced learning rates for older individuals. These findings are
consistent with previous work in young adults showing positive associa-
tions between network modularity and successful learning (Bassett et al.,
2011; Ellefsen et al., 2015) and higher-order cognitive processing gener-
ally (Kitzbichler et al., 2011; Braun et al., 2015). However, these positive
associations at later ages are particularly interesting in the context of
the developmental trends detected, where older individuals on average
show decreased modularity across waves. Despite normative decreases
in network modularity during late adolescence and young adulthood,
individuals with higher modularity show greater learning performance.
This might lend support to the first explanation of the interaction ef-
fect of age and wave — that adolescent-typical neural phenotypes offer
advantages in performance (e.g., Johnson and Wilbrecht, 2011; Jones
et al., 2014; van van Duijvenvoorde et al., 2016). If young adults simply
did not need highly modular networks to perform what is a relatively
easy task for them (i.e., the expansion-renormalization hypothesis), then
we would expect that the relationship between modularity and learning
performance would decrease. However, the positive interaction effect
(Fig. 7) suggests that older individuals show an even greater dependence
on high modularity for successful learning performance compared with
younger participants. This pattern of results presents a compelling case
for adolescent-specific advantages in learning. For older individuals, re-
taining “immature,” but apparently more-optimal, network configura-
tions helps boost behavioral performance.

4.4. Conclusions

In summary, we took a novel modeling approach to disaggregate
change in learning and neural networks across different timescales.
While we focus on learning here, these results highlight the potential
flexibility of mixed-effects models for probing complex developmental
trajectories in other domains. We found nonlinear patterns of devel-
opment for both behavior and brain, which were moderated by ex-
perience. Specifically, greater experience with the task across waves
supported increased learning and network modularity relative to com-
paratively naive subjects at later ages, highlighting that these effects
can potentially bias age-related inferences unless explicitly included in
longitudinal models. Future research using accelerated longitudinal de-
signs (or see McCormick, preprint for alternatives) should take care to
model practice/exposure-related effects to remove this confound. Fi-
nally, we showed changing brain-behavior relationships across adoles-
cence, where higher network modularity predicts increased learning
performance only following the transition into young-adulthood. These
results present compelling support for an interactive view of experi-
ence and development, where changes in the brain impact behavior
in context-specific fashion based on developmental goals (Crone and
Dahl, 2012; Romer et al., 2017).

Credit authorship contribution statement

Ethan M. McCormick: Conceptualization, Methodology, Formal
analysis, Writing - original draft, Visualization. Sabine Peters: In-
vestigation, Data curation, Writing - review & editing, Supervision.
Eveline A. Crone: Investigation, Data curation, Writing - review & edit-
ing, Supervision, Project administration, Funding acquisition. Eva H.
Telzer: Conceptualization, Writing - review & editing, Supervision.

Acknowledgments
Author Contributions: S.P. and E.A.C. designed research, and per-

formed research; E.M.M., analyzed data; E.M.M., S.P., E.A.C. & E.H.T.
wrote the paper.



E.M. McCormick, S. Peters, E.A. Crone et al.

This research was funded by a starting grant of the European Re-
search Council (ERC-2010-StG-263234 awarded to E.A.C.) and a grant
from the Netherlands Organization for Scientific Research (NWO-VICI
453-14-001 awarded to E.A.C.). We would like to thank Laura van der
Aar, Sibel Altikulac, Neeltje Blankenstein, Barbara Braams, Suzanne van
de Groep, Juliette Cassé, Dianne van der Heide, Jorien van Hoorn, Cé-
dric Koolschijn, Babette Langeveld, Kyra Lubbers, Batsheva Mannheim,
Mara van der Meulen, Rosa Meuwese, Sandy Overgaauw, Jiska Peper,
Elisabeth Schreuders, Merel Schrijver, Jochem Spaans, Marije Stolte,
Erik de Water, and Bianca Westhoff for their help with data collection..
Finally we would like to thank all participants and their parents for their
collaboration.

E.M.M. was supported in this research by grants from the National
Institutes of Health (RO1DA039923, RO1 EB022904 awarded to E.H.T.)
and generous funds from the University of North Carolina at Chapel Hill.

The authors declare no competing financial interests.

Data and code availability

Processed behavioral and fMRI data, as well as all code used in the
analyses supporting the primary findings of this study are available at
Open Science Framework; project https://osf.io/62gwz/. Investigators
interested in obtaining raw behavioral and fMRI data should contact
E.A.C..

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2021.117784.

References

Aiken, L.S., West, S.G., 1991. Multiple Regression: Testing and Interpreting Interactions.
Sage Publications, Inc.

Bassett, D.S., Wymbsb, N.F., Porterc, M.A., Muchae, P.J., Carlsona, J.M., Graftonb, S.T.,
2011. Dynamic reconfiguration of human brain networks during learning. Proc. Natl.
Acad. Sci. 108 (18), 7641-7646.

Bassett, D.S., Yang, M., Wymbs, N.F., Grafton, S.T., 2015. Learning-induced autonomy of
sensorimotor systems. Nat. Neurosci. 18 (5), 744-751.

Bates, D., Méchler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models
using lme4. J. Stat. Softw. 67 (1), 1-48.

Bell, R.Q., 1953. Convergence: an accelerated longitudinal approach. Child Dev. 145-152.

Blakemore, S.J., Mills, K.L., 2014. Is adolescence a sensitive period for sociocultural pro-
cessing? Annu. Rev. Psychol. 65, 187-207.

Braun, U., Schéfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., Meyer-Lin-
denberg, A., 2015. Dynamic reconfiguration of frontal brain networks during execu-
tive cognition in humans. Proc. Natl. Acad. Sci. 112 (37), 11678-11683.

Bullmore, E.T., Bassett, D.S., 2011. Brain graphs: graphical models of the human brain
connectome. Annual Review of Clinical Psychology 7, 113-140.

Casey, B.J., 2015. Beyond simple models of self-control to circuit-based accounts of ado-
lescent behavior. Annual Review of Psychology 66, 295-319.

Casey, B.J., Jones, R.M., Hare, T.A., 2008. The adolescent brain. Ann. N. Y. Acad. Sci.
1124 (1), 111-126.

Casey, B.J., Tottenham, N., Liston, C., Durston, S., 2005. Imaging the developing brain:
what have we learned about cognitive development? Trends Cognit. Sci. 9 (3),
104-110.

Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G.L., Ruparel, K., Gur, R.C., 2017.
Benchmarking of participant-level confound regression strategies for the control of
motion artifact in studies of functional connectivity. Neuroimage 154, 174-187.

Cohen, J.R., D’Esposito, M., 2016. The segregation and integration of distinct brain
networks and their relationship to cognition. Journal of Neuroscience 36 (48),
12083-12094.

Crone, E.A., Dahl, R.E., 2012. Understanding adolescence as a period of social-affective
engagement and goal flexibility. Nat. Rev. Neurosci. 13 (9), 636-650.

Crone, E.A., Steinbeis, N., 2017. Neural perspectives on cognitive control development
during childhood and adolescence. Trends in Cognitive Sciences 21 (3), 205-215.
Dale, A.M., 1999. Optimal experimental design for event-related fMRI. Hum. Brain Mapp.

8 (2-3), 109-114.

Daw, N.D., O’doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J., 2006. Cortical substrates
for exploratory decisions in humans. Nature 441 (7095), 876-879.

Daw, N.D., Shohamy, D., 2008. The cognitive neuroscience of motivation and learning.
Social Cognition 26 (5), 593-620.

Ellefsen, K.O., Mouret, J.B., Clune, J., 2015. Neural modularity helps organisms evolve to
learn new skills without forgetting old skills. PLoS Comput. Biol. 11 (4), e1004128.

Flora, D.B., 2008. Specifying piecewise latent trajectory models for longitudinal data.
Struct. Equ. Model. 15 (3), 513-533.

12

Neurolmage 229 (2021) 117784

Galvén, A., 2010. Neural plasticity of development and learning. Hum. Brain Mapp. 31
(6), 879-890.

Gerraty, R.T., Davidow, J.Y., Foerde, K., Galvan, A., Bassett, D.S., Shohamy, D., 2018. Dy-
namic flexibility in striatal-cortical circuits supports reinforcement learning. J. Neu-
rosci. 2017-2084.

Gerraty, R.T., Davidow, J.Y., Wimmer, G.E., Kahn, 1., Shohamy, D., 2014. Transfer of
learning relates to intrinsic connectivity between hippocampus, ventromedial pre-
frontal cortex, and large-scale networks. J. Neurosci. 34 (34), 11297-11303.

Gonzalez-Castillo, J., Hoy, C.W., Handwerker, D.A., Robinson, M.E., Buchanan, L.C.,
Saad, Z.S., Bandettini, P.A., 2015. Tracking ongoing cognition in individuals using
brief, whole-brain functional connectivity patterns. Proc. Natl. Acad. Sci. 112 (28),
8762-8767.

Johnson, C., Wilbrecht, L., 2011. Juvenile mice show greater flexibility in multiple choice
reversal learning than adults. Dev. Cognit. Neurosci. 1 (4), 540-551.

Jolles, D., Crone, E.A., 2012. Training the developing brain: a neurocognitive perspective.
Frontiers in Human Neuroscience 6, 76.

Jones, R.M., Somerville, L.H., Li, J., Ruberry, E.J., Powers, A., Mehta, N, ..., Casey, B.J.,
2014. Adolescent-specific patterns of behavior and neural activity during social rein-
forcement learning. Cognitive, Affective, & Behavioral Neuroscience 14 (2), 683-697.

Kitzbichler, M.G., Henson, R.N., Smith, M.L., Nathan, P.J., Bullmore, E.T., 2011. Cog-
nitive effort drives workspace configuration of human brain functional networks. J.
Neurosci. 31 (22), 8259-8270.

Li, F., Duncan, T.E., Duncan, S.C., Hops, H., 2001. Piecewise growth mixture modeling of
adolescent alcohol use data. Struct. Equ. Model. 8 (2), 175-204.

Luna, B., Padmanabhan, A., O’Hearn, K., 2010. What has fMRI told us about the develop-
ment of cognitive control through adolescence? Brain Cognit. 72 (1), 101-113.

McCormick, E.M., Telzer, E.H., 2017a. Adaptive adolescent flexibility: neurodevelop-
mental of decision-making and learning in a risky context. J. Cognit. Neurosci. 29,
413-423.

McCormick, E.M., Telzer, E.H., 2017b. Failure to retreat: blunted sensitivity to negative
feedback supports risky behavior in adolescents. Neuroimage 147, 381-389.

McCormick, E.M., Telzer, E.H., 2018. Not doomed to repeat: enhanced medial prefrontal
cortex tracking of errors promotes adaptive behavior during adolescence. J. Cognit.
Neurosci. 30 (3), 281-289.

McCormick, E.M., Gates, K.M., Telzer, E.H., 2019. Model-based network discovery of de-
velopmental and performance-related differences during risky decision-making. Neu-
rolmage 188, 456-464.

McCormick, E.M. (preprint). Multi-Level Multi-Growth Models: New Opportu-
nities for Addressing Developmental Theory Using Longitudinal Designs.
10.1101/2020.10.21.349274

Mehta, P.D., West, S.G., 2000. Putting the individual back into individual growth curves.
Psychol. Methods 5 (1), 23.

Pattwell, S.S., Bath, K.G., Casey, B.J., Ninan, L., Lee, F.S., 2011. Selective early-acquired
fear memories undergo temporary suppression during adolescence. Proceedings of the
National Academy of Sciences 108 (3), 1182-1187.

Peters, S., Crone, E.A., 2017. Increased striatal activity in adolescence benefits learning.
Nat. Commun. 8 (1), 1983.

Peters, S., Braams, B.R., Raijmakers, M.E., Koolschijn, P.C.M., Crone, E.A, 2014. The neu-
ral coding of feedback learning across child and adolescent development. J. Cognit.
Neurosci. 26 (8), 1705-1720.

Peters, S., Van Duijvenvoorde, A.C., Koolschijn, P.C.M., Crone, E.A, 2016. Longitudi-
nal development of frontoparietal activity during feedback learning: contributions
of age, performance, working memory and cortical thickness. Dev. Cognit. Neurosci.
19, 211-222.

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but
systematic correlations in functional connectivity MRI networks arise from subject
motion. Neurolmage 59 (3), 2142-2154.

Romer, D., Reyna, V.F., Satterthwaite, T.D., 2017. Beyond stereotypes of adolescent risk
taking: Placing the adolescent brain in developmental context. Developmental Cogni-
tive Neuroscience 27, 19-34.

Rubinov, M., Sporns, O., 2011. Weight-conserving characterization of complex functional
brain networks. Neurolmage 56 (4), 2068-2079.

Sadaghiani, S., D’Esposito, M., 2015. Functional characterization of the cingulo-opercular
network in the maintenance of tonic alertness. Cerebral Cortex 25 (9), 2763-2773.

Seitzman, B.A., Gratton, C., Marek, S., Raut, R.V., Dosenbach, N.U., Schlaggar, B.L., ...,
Greene, D.J., 2020. A set of functionally-defined brain regions with improved repre-
sentation of the subcortex and cerebellum. Neurolmage 206, 116290.

Shirer, W.R., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.D., 2012. Decoding sub-
ject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22
(1), 158-165.

Shulman, E.P., Smith, A.R., Silva, K., Icenogle, G., Duell, N., Chein, J., Steinberg, L., 2016.
The dual systems model: review, reappraisal, and reaffirmation. Dev. Cognit. Neu-
rosci. 17, 103-117.

Steinberg, L., Albert, D., Cauffman, E., Banich, M., Graham, S., Woolard, J., 2008. Age dif-
ferences in sensation seeking and impulsivity as indexed by behavior and self-report:
evidence for a dual systems model. Dev. Psychol. 44 (6), 1764.

Telesford, Q.K., Ashourvan, A., Wymbs, N.F., Grafton, S.T., Vettel, J.M., Bassett, D.S.,
2017. Cohesive network reconfiguration accompanies extended training. Hum. Brain
Mapp. 38 (9), 4744-4759.

Telzer, E.H., McCormick, E.M., Peters, S., Cosme, D., Pfeifer, J.H., van Duijvenvo-
orde, A.C., 2018. Methodological considerations for developmental longitudinal fMRI
research. Dev. Cognit. Neurosci. 33, 149-160.

van Duijvenvoorde, A.C., de Macks, Z.A.O., Overgaauw, S., Moor, B.G., Dahl, R.E.,
Crone, E.A., 2014. A cross-sectional and longitudinal analysis of reward-related brain
activation: effects of age, pubertal stage, and reward sensitivity. Brain and Cognition
89, 3-14.


https://osf.io/62gwz/
https://doi.org/10.1016/j.neuroimage.2021.117784
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0005
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0005a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0005a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0005a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0001a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0001a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0010a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0003a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0008a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0008a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0008a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0021
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0002a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0015a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0004a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0012a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0006a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0016a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0016a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0016a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0016a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0011a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0011a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0011a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0009a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0007a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0013a

E.M. McCormick, S. Peters, E.A. Crone et al.

van Duijvenvoorde, A.C., Peters, S., Braams, B.R., Crone, E.A., 2016. What motivates ado-
lescents? Neural responses to rewards and their influence on adolescents’ risk taking,
learning, and cognitive control. Neuroscience & Biobehavioral Reviews 70, 135-147.

Van Duijvenvoorde, A.C., Zanolie, K., Rombouts, S.A., Raijmakers, M.E., Crone, E.A., 2008.
Evaluating the negative or valuing the positive? Neural mechanisms supporting feed-
back-based learning across development. J. Neurosci. 28 (38), 9495-9503.

13

Neurolmage 229 (2021) 117784

Vigilant, L., Roy, J., Bradley, B.J., Stoneking, C.J., Robbins, M.M., Stoinski, T.S., 2015. Re-
productive competition and inbreeding avoidance in a primate species with habitual
female dispersal. Behav. Ecol. Sociobiol. 69 (7), 1163-1172.

Wenger, E., Brozzoli, C., Lindenberger, U., Lovdén, M., 2017. Expansion and renormal-
ization of human brain structure during skill acquisition. Trends Cognit. Sci. 21 (12),
930-939.


http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0014a
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00061-6/sbref0056

	Longitudinal network re-organization across learning and development
	1 Introduction
	2 Methods
	2.1 Sample
	2.2 Feedback learning task
	2.3 Behavioral analyses
	2.3.1 Task metrics of behavior
	2.3.2 Linear mixed-effects model

	2.4 fMRI data acquisition and processing
	2.4.1 MRI data acquisition
	2.4.2 fMRI data preprocessing and analysis
	2.4.3 Nuisance regressors
	2.4.4 Graph construction
	2.4.5 Graph metric

	2.5 Developmental model
	2.6 Probing interactions

	3 Results
	3.1 Descriptives and age-only growth models
	3.2 Behavioral improvements in learning performance
	3.2.1 Separating effects of age and wave
	3.2.2 Learning rate improvements show interactions across levels of time

	3.3 Changes in network modularity
	3.3.1 Separating effects of age and wave
	3.3.2 Network modularity shows interactions across levels of time
	3.3.3 Predicting learning with network modularity


	4 Discussion
	4.1 Multi-Level changes in learning rate and brain networks
	4.2 Cross-level interactions between growth at different scales
	4.3 Changing brain-behavior relationships
	4.4 Conclusions

	Credit authorship contribution statement
	Acknowledgments
	Data and code availability
	Supplementary materials
	References


