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a b s t r a c t 

While it is well understood that the brain experiences changes across short-term experience/learning and long-term development, it is unclear how these two 

mechanisms interact to produce developmental outcomes. Here we test an interactive model of learning and development where certain learning-related changes 

are constrained by developmental changes in the brain against an alternative development-as-practice model where outcomes are determined primarily by the 

accumulation of experience regardless of age. Participants (8–29 years) participated in a three-wave, accelerated longitudinal study during which they completed a 

feedback learning task during an fMRI scan. Adopting a novel longitudinal modeling approach, we probed the unique and moderated effects of learning, experience, 

and development simultaneously on behavioral performance and network modularity during the task. We found nonlinear patterns of development for both behavior 

and brain, and that greater experience supported increased learning and network modularity relative to naïve subjects. We also found changing brain-behavior 

relationships across adolescent development, where heightened network modularity predicted improved learning, but only following the transition from adolescence 

to young adulthood. These results present compelling support for an interactive view of experience and development, where changes in the brain impact behavior 

in context-specific fashion based on developmental goals. 
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. Introduction 

The brain is a dynamic system capable of reshaping itself across time

o adapt to its external environment. For some developmental processes

e.g., cognitive control or risk-taking; Casey, 2015 ; or socioemotional

evelopment; Blakemore and Mills, 2014 ), these changes unfold across

ong time horizons (e.g., months or years). However, functional devel-

pment does not require years, or even months, to show measurable

hanges. Indeed, a broad literature has demonstrated that brain func-

ion rapidly adapts to task demands and feedback to support skill acqui-

ition or goal-directed behavior (e.g., Daw et al., 2006 ; Bassett et al.,

011 ; McCormick and Telzer, 2017a , 2017b , 2018 ; Telesford et al.,

017 ; Gerraty et al., 2018 ). However, it remains unclear to what ex-

ent these short-term, learning-related changes in brain activation over-

ap with the long-term, maturational plasticity seen across years and

ecades of development ( Galván, 2010 ). Here, we test two potential ex-

lanations for how experience and development interact across time to

xplain changes in learning performance and the functional brain sys-

ems that support that performance across time. To probe these interac-

ions, we adopt a novel application of longitudinal modeling that allows

s to consider changes across minutes, years, and the course of devel-

pment simultaneously. This approach offers an integrated perspective

f learning and development as co-dependent processes of neural and

ehavior plasticity which interact across time. 
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While traditionally thought of as a period of vulnerability

 Steinberg et al., 2008 ; Casey et al., 2008 ; Shulman et al., 2016 ),

dolescence is also a period associated with increases in flexible be-

avior and the capacity to learn from feedback in the environment

 Johnson and Wilbrecht, 2011 ; Crone and Dahl, 2012 ; Casey, 2015 ;

igilant et al., 2015 ), with neural changes associated with age support-

ng increased learning ( Van Duijvenvoorde et al., 2008 ; Peters et al.,

016 ; McCormick and Telzer, 2017a ; Peters and Crone, 2017 ). In gen-

ral. the ability to learn and engage in other complex cognitive tasks

 Casey et al., 2005 ; Luna et al., 2010 ), improves with age through the

rst decades of life. However, this co-occurrence does not by itself im-

ly that maturation is necessary for the age-related improvements in

earning seen during development. With increased age also comes more

xperience and practice at skills needed to support task performance.

nder this view, development involves the accumulation of practice or

raining of neural systems, and the neural mechanisms for this process

hould closely resemble those involved in short-term learning. In con-

rete terms, this would imply that developmentally younger individuals

an be trained to perform as well as older individuals given sufficient

ractice. 

In contrast, an interactive view of learning and development would

uggest that certain kinds of neural changes in response to learning are

onstrained by developmental changes in the brain. In other words, it

hould be practically impossible to train a child to perform at adult lev-

ls because they have not experienced the maturational changes in the

rain necessary to support that performance. This would suggest that
nuary 2021 
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ertain kinds of neural changes in response to learning will be relatively

nique to older individuals. These two alternative accounts are not mu-

ually exclusive, since training studies in younger individuals clearly

emonstrate that there is some capacity to improve cognitive perfor-

ance and shift brain function even in the maturing brain ( Jolles and

rone, 2012 ). However, the first explanation of how learning and devel-

pment interact would predict that this capacity to train should be quite

xtensive, whereas the second explanation would predict that biologi-

al maturation imposes stricter limitations on the ability to train young

ndividual to “adult ” levels of performance. It is important to note, how-

ver, that these limitations may not be maladaptive, but rather serve

ome other developmental function where “immature ” brain states or

ehavioral performance are important for flexible learning and adapta-

ion (e.g., Johnson and Wilbrecht, 2011 ; Jolles and Crone, 2012 ; Crone

nd Steinbeis, 2017 ; McCormick and Telzer, 2017a ). 

A major challenge in modeling experience and development simulta-

eously is that in real data, they are often confounded ( Bell, 1953 ; Jolles

nd Crone, 2012 ; Telzer et al., 2018 ) in developmental models. In lon-

itudinal studies which use a cohort-sequential (or panel) design, where

ndividuals are repeatedly assessed at the same ages, older participants

re also more-experienced participants (both in life and practice in the

pecific measures of interest). In neuroimaging contexts, these experi-

nce effects can confound developmental effects in a number of ways,

ncluding reducing anxiety about the scanner environment, changing

aseline conditions (the “task B ” problem), or reduce errors on tasks

hrough familiarity rather than change in underlying ability ( Jolles and

rone, 2012 ; Telzer et al., 2018 ). Fortunately, we can leverage an alter-

ative, the accelerated longitudinal design, to address these challenges.

n accelerated longitudinal studies, individuals vary in the age of first as-

essment and are followed longitudinally thereafter. By adopting this de-

ign, we can de-couple experience from age (or other measure of devel-

pmental stage) sufficiently to successfully model the accumulation of

xperience and developmental maturation simultaneously ( McCormick,

reprint ). 

The current study tests the two competing hypotheses of how expe-

ience and development interact to drive neural plasticity during learn-

ng. Participants across a wide age range (8–29 years) participated in a

hree-wave, accelerated longitudinal neuroimaging study during which

hey completed a feedback learning task. By leveraging the acceler-

ted longitudinal design and a novel extension of mixed-effects models

 McCormick, preprint ), we differentiate between three temporal levels

f neural plasticity: 1) short-term practice-related changes within a scan

ession (within-individual) across blocks of feedback learning; 2) long-

erm changes within individuals, across measurement occasions (i.e.,

aves); and 3) the mixed (i.e., within- and between-individual) effect

f changes associated with age. By considering these three levels in the

ame model, we can partition effects at each level. (1) Within-session

hanges reflect how brain and behavior adapt during learning the task

tructure, (2) between-session changes reflect changes due to experi-

nce after repeated exposure to the task and testing environments, (3)

hile age reflects the developmental effect. Importantly, including ef-

ects at the second level allows us to de-confound age and experience,

iving a more reliable estimate of the developmental effect. Because

earning is an integrative process, involving the interactions between

any brain regions ( Bassett et al., 2011 ; Gerraty et al., 2014 , 2015 ;

cCormick and Telzer, 2017a ; Gerraty et al., 2018 ; McCormick, Gates,

 Telzer, 2019 ), we test this developmental model in the context of

rain networks. Specifically, we model the interaction of practice, expe-

ience, and development effects on network modularity. Modularity is

 measure of the degree of network segregation into distinct functional

nits ( Bullmore and Bassett, 2011 ). Higher levels of modularity in brain

etworks predicts increased learning ( Bassett et al., 2011 ; Ellefsen et al.,

015 ) and working memory ( Braun et al., 2015 ) performance in adults.

Our analytic approach to addressing these questions involved several

teps. First, we fit mixed-effects models with only linear and quadratic

ffects of age on behavioral performance and network modularity dur-
2 
ng learning separately ( Peters et al., 2016 ; Peters and Crone, 2017 )

or comparison to more complex models. We then included predictors

f within- and between-session change as main effects to consider the

nique effects of practice, experience, and development, before fitting

 model that included interaction terms between our predictors. This

hird model allowed us to probe how the effects of the lower-level pre-

ictors change across development in a continuous fashion. Finally,

e estimated a brain-as-predictor model where we probed how brain

tates (e.g., high versus low modularity) differentially predicted learn-

ng performance across practice, experience, and development. This fi-

al model tests a core difference between the two explanations of devel-

pmental improvement in learning performance. In the development-as-

ractice view, network modularity should predict learning performance

onsistently regardless of when in the developmental trajectory (i.e.,

here is no moderation by age). This is contrasted by the interaction

iew of development and experience, where we would expect that mod-

larity would predict performance differentially depending on age. 

. Methods 

.1. Sample 

A total of 299 participants (ages 8–29 years; 153 female) partici-

ated in a 3-wave, accelerated longitudinal MRI study. Participants were

canned every 2 years, spanning a 5-year period ( Fig. 1 ). At wave 1, 28

articipants were excluded for a number of factors including not com-

leting the MRI session ( N = 4), excessive movement during the scan

ession ( > 3 mm relative motion in any direction/rotation) ( N = 22),

DD diagnosis disclosure ( N = 1), and reported medicine use ( N = 1), re-

ulting in a final sample of 271 participants at the initial data collection

140 female; M age = 14.17, SD = 3.63, range = 8.01–25.95 years). At wave 2

2 years later), 254 participants were scanned (33 could not be scanned

ue to braces; 11 declined to return). Of the scanned participants, an

dditional 21 were excluded (12 for motion; 2 for preprocessing errors;

 for T2 artifacts; 1 for medicine use; 1 for ADD diagnosis), leaving

 final sample of 233 participants (121 female; M age = 16.15, SD = 3.62,

ange = 10.02–26.61 years). During the final wave (2 years later), 243

articipants were scanned (11 could not be scanned due to braces; 45

eclined to return). Of these, 11 were excluded (3 did not complete MRI

ession; 4 for motion; 2 for processing errors; 1 for medicine use; 1 for

DD diagnosis), for a total final sample of 232 participants (121 female;

 age = 18.15, SD = 3.68, range = 11.94–28.72 years). Across the dataset,

83 participants had data at all three waves, 78 participants had data

t two waves, 31 participants had data at only one wave, and 7 were

xcluded at all three waves. A total of 736 scans were included for final

ata analyses. When considered at the trail level, these scans yielded

799 observations for modeling. 

IQ scores were measured at the first two waves of data collection, us-

ng the WISC-III (for participants < 16 years; N W1 = 195; N W2 = 119) or

AIS-III (for participants ≥ 16 years; N W1 = 76; N W2 = 114). All partic-

pants were within the normal range at wave 1 ( M = 109.8, SD = 10.34,

ange = 80–142.5) and wave 2 ( M = 108.3, SD = 10.27, range = 80–147.5).

urther details and the distributions of the descriptive variables are

vailable in the supplemental material. 

.2. Feedback learning task 

Participants completed a feedback learning task during an fMRI ses-

ion ( Peters et al., 2014 , 2016 ). On each trial, participants saw a screen

ith three empty boxes and one (out of a possible set of three) stimulus

nderneath ( Fig. 2 ). Participants were told that each stimulus within a

iven set had a corresponding correct location among the empty boxes

nd that their goal on the task was to appropriately sort each stimulus

nto its location. For each stimulus-location choice, participants either

eceived positive (a “+ ” sign) or negative (a “- ” sign) feedback based

n their choice. Positive feedback indicated correct stimulus placement,
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Fig. 1. Structure of repeated measures within 

the accelerated longitudinal design. Partici- 

pants are ordered in ascending order based on 

their age at wave 1. Sex is denoted by separate 

colors. 

Fig. 2. During the Feedback Learning task, participants learned the correct placement of each stimuli (e.g., the elephant) through feedback. Participants received 

either positive or negative feedback on each trial. 
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hile negative feedback indicated incorrect placement. Each stimulus

ithin a set associated with a unique, deterministically correct location.

timuli within a set were presented in pseudorandom order, constrained

uch that no stimulus within a set was present more than twice in a row.

fter a maximum of 12 trials per block, or after all three stimuli within

 set were correctly placed twice (indicating that all locations were suc-

essfully learned), stimulus sets were swapped out for a new set with

hree new stimuli. Participants saw a total of 15 blocks of 3-stimuli sets

for a maximum possible of 180 trials) at waves 1 and 2, and 10 blocks

maximum possible 120 trials) at wave 3. Prior to the MRI session, par-

icipants practiced three example sets of stimuli. Each trial consisted of

he following: 1) a 500-ms fixation cross, 2) stimulus presentation for

500 ms while participants made location decisions, and 3) feedback

resentation for 1000 ms. Trials were separated by intervals jittered

ased on OptSeq ( Dale, 1999 ), with durations that varied between 0

nd 6 s. 
3 
.3. Behavioral analyses 

.3.1. Task metrics of behavior 

Our primary metric of task performance was the learning rate par-

icipants displayed in forming correct stimulus-location associations. To

alculate learning rate, we distinguished between two phases of task

erformance: the learning and the application phase ( Peters et al., 2014 ,

016 ). The learning phase was defined as trials where the correct loca-

ion for a given stimulus was still unknown, and participants needed

o rely on trial-and-error or hypothesis testing to correctly place the

timulus. Trials in the learning phase could result in either positive (in-

icating a future stay strategy) or negative (prompting a future shift

trategy) feedback. In contrast, the application phase was defined as

rials where the correct location for the presented stimulus is already

nown (as established by an earlier learning trial) and participants cor-

ectly place that stimulus again. Learning rate was calculated as the
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roportion of trials in the learning phase where feedback was correctly

pplied in the following trial involving the same stimulus (either as re-

eated placement following positive feedback or as altered placement

ollowing negative feedback) out of all the trials during the learning

hase. 

.3.2. Linear mixed-effects model 

To test our developmental/experience interaction model, we fit a lin-

ar mixed-effects model to participants’ learning rate data. We followed

 model-building procedure similar to the one used in previous work

n this sample ( Peters et al., 2016 ; Peters and Crone, 2017 ). This pro-

edure involved a build-up approach where we tested main effects and

hen interactions of time to establish the optimal developmental form

efore bringing in additional predictors. We fit a random effects ANOVA

odel with a random intercept which served as a comparison for subse-

uent models. For descriptive purposes at the random effects level, we

t a three level model where blocks were nested within wave and then

ithin person, however for comparison with future models, we also fit a

wo level model where wave and age were included at level 1. To com-

are across levels of change, we constructed a model using the lme4

oftware package through R (version 1.1–21; Bates et al., 2015 ), where

timulus blocks ( N = 1-max 15) and wave ( N = 1–3) were nested within

ndividual, and age was included as a time-varying covariate. Because

ave (i.e., repeated exposure to the task) was a predictor of interest,

e did not nest with respect to wave since that would result in a vari-

ble that acts as both a nesting factor and linear effect of interest. We

ncluded interactions between wave, age, and blocks. To capture more

omplex changes in behavior between blocks of the task, we utilized

iece-wise regression at level 1 ( Flora, 2008 ; Li et al., 2001 ), including

redictors which model the linear effects across the first and second half

f the task separately. This model resulted in the following equation: 

Reduced Form: 

𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡 𝑒 𝑖𝑗 = 𝛾00 + 𝛾10 𝐹 𝑖𝑟𝑠𝑡 𝐻𝑎𝑙 𝑓 𝑖𝑗 + 𝛾20 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻𝑎𝑙 𝑓 𝑖𝑗 + 𝛾30 𝑊 𝑎𝑣 𝑒 𝑖𝑗

+ 𝛾40 𝐴𝑔 𝑒 𝑖𝑗 + 𝛾50 𝐴𝑔𝑒 
2 
𝑗 
+ 𝛾60 𝐹 𝑖𝑟𝑠𝑡 𝐻𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝑊 𝑎𝑣 𝑒 𝑖𝑗 

+ 𝛾70 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝑊 𝑎𝑣 𝑒 𝑖𝑗 + 𝛾80 𝐹 𝑖𝑟𝑠𝑡 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔 𝑒

+ 𝛾90 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔 𝑒 𝑖𝑗 + 𝛾100 𝐹 𝑖𝑟𝑠𝑡 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔𝑒 2𝑖
+ 𝛾110 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔𝑒 2 𝑖𝑗 + 𝛾120 𝑊 𝑎𝑣 𝑒 𝑖𝑗 ∗ 𝐴𝑔 𝑒 𝑖𝑗 
+ 𝛾130 𝑊 𝑎𝑣 𝑒 𝑖𝑗 ∗ 𝐴𝑔𝑒 2 𝑖𝑗 + 𝑢 0 𝑗 + 𝑟 𝑖𝑗 

While previous work has discouraged using wave as a predic-

or in longitudinal models (instead using precise age; see Mehta and

est, 2000 ), here we draw a meaningful distinction between wave and

ge. We would expect changes in behavior after each subsequent expo-

ure the task environment ( Telzer et al., 2018 ), which due to the sam-

ling method in accelerated longitudinal designs is disassociated with

ge to some degree because a large age range is represented at each

ave. 

.4. fMRI data acquisition and processing 

.4.1. MRI data acquisition 

Scans across all three waves were acquired using the same

hilips 3T MRI scanner, utilizing identical scan settings. The Feed-

ack Learning Task included T2 ∗ -weighted echoplanar images (EPI;

lice thickness = 2.75 mm; 38 slices; sequential acquisition; TR = 2.2 s;

E = 30 ms; FOV = 220 × 220 × 114.68 mm). Additionally, struc-

ural images were acquired, including a high-resolution 3D T1-

FE anatomical scan (TR = 9.76 ms; TE = 4.59 ms; 140 slices; voxel

ize = 0.875 × 0.875 × 1.2 mm; FOV = 224 × 177 × 168 mm; flip angle = 8).

rior to undergoing the scan procedure, participants were introduced to

he scanner environment (e.g., space and noises) through a mock scan

ession. 
4 
.4.2. fMRI data preprocessing and analysis 

Preprocessing and analyses utilized a suite of tools from FSL FMRIBs

oftware Library (FSL v6.0; https://fsl.fmrib.ox.ac.uk/fsl/ ), Steps taken

uring preprocessing included skull stripping of all images using BET;

nd slice-to-slice motion correction of EPI images using MCFLIRT; co-

egisteration in a two-step sequence to the high-resolution T2-weighted

nd T1-FFE anatomical images using FLIRT in order to warp them into

he standard stereotactic space defined by the Montreal Neurological

nstitute (MNI) and the International Consortium for Brain Mapping;

nd the application of a 128 s high-pass temporal filter to remove low

requency drift within the time-series. 

.4.3. Nuisance regressors 

Prior to modeling the fMRI data further, we took several steps to

educe the influence of motion. Motion, as measured by framewise dis-

lacement ( Power et al., 2012 ), was minimal across the sample (mean

cross participants = 0.12 mm FD; max = 0.77 mm; average percent-

ge of volumes with > 0.3 mm FD = 4.95%). We also controlled for

 nuisance regressors in the GLM and time-series analyses: 6 motion

arameters generated during realignment and the average signal from

oth the white matter and cerebrospinal fluid masks. Previous work (see

iric et al., 2017 ) has shown that these strategies reduce the influence

f motion on functional connectivity analyses. 

.4.4. Graph construction 

We then utilized a graph theoretical approach to investigate how

etworks in the brain changed across levels of practice, experience,

nd development. Using a subset of the BigBrain parcellation scheme

 Sietzman et al., 2020 ), an atlas comprised of 300, 5-mm sphere parcels

rom cortical and subcortical regions, we extracted functional timeseries

ata for each block (15 in total) in order to model changes in network

tructure across time during the task. We chose to examine network fea-

ures between regions with theoretical relevance to task performance

uring learning. This resulted in 147 regions including those in the

ingulo-opercular (14), default mode (55), fronto-parietal (27), salience

14), ventral (9) and dorsal (14) attention, hippocampal (6), and reward

8) sub-networks (for the relevant ROI coordinates on a whole-brain

rojection, see Figure S1). Selection of these networks were guided by

hose regions engaged in the feedback learning task in previous research

 Peters et al., 2016 ; Peters et al., 2016 ) or classically engaged during

earning and decision-making ( Daw and Shohamy, 2008 ; Sadaghiani

nd D’Esposito, 2014 ; McCormick and Telzer, 2018 a; McCormick et al.,

019 ). This subset was chosen to balance including enough regions of

nterest with the challenges of computing whole-brain networks on rel-

tively short timeseries. Regions were included or excluded as a group

ased on their network label (e.g., all fronto-paretial regions were in-

luded while all visual regions were excluded). As a follow-up sensitiv-

ty analysis, we re-ran all analyses with modularity calculated on the

hole-brain network (whole-brain modularity values are available in

he posted data file; https://osf.io/62gwz/ ). Results remained substan-

ively unchanged and we retained the subset to maintain fidelity to the

riginal analysis plan. 

To extract, we constructed a task regressor made from the onset

nd duration of each block of stimuli convolved with an HRF function.

hese regressors were multiplied with the entire timeseries extracted

rom ROIs in order to give a set of time-series files for each individual

t each wave. Block durations ( M = 45.32 s; SD = 3.26; range = 37.27–

0.23 s) were comparable to approaches used in dynamic functional

onnectivity analyses (approximately 30 s; Shirer et al., 2012 ; Gonzalez-

astillo et al., 2015 ). Correlation matrices were constructed by comput-

ng the zero-lag cross-correlation between each ROI. Graph metrics were

alculated across a range of costs (5–20% in 5% increments; Cohen and

’Esposito, 2016 ). We utilized the standard community assignment for

istinguishing within- versus between-network edges (Sietzman et al.,

020). 

https://fsl.fmrib.ox.ac.uk/fsl/
https://osf.io/62gwz/
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Fig. 3. Probing Interactions with Age. Four distinct ages were chosen to probe interactions with age, including during early adolescence (12, [~ − 1SD]; red), middle 

adolescence (16, [~ mean age], green), late adolescence (20, [ + 1SD]; blue), and young adulthood (25, [~ + 2SD], purple). Bar height represents the proportion of 

observations at that level. Rug plot hashes (below x-axis) represent individual observations. 
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.4.5. Graph metric 

For our measure of brain development, we calculated network mod-

larity, or the degree to which communities within the brain network

re segregated. Modularity is computed as the relative number of edges

etween nodes of the same community compared to the number of to-

al edges within the brain graph. We calculated modularity (Q 

∗ ) using

ositive and negative weighted edges as: 

 

∗ = 

1 
2 𝑊 

+ 

∑
𝑖𝑗 

(
𝑤 

+ 
𝑖𝑗 
− 𝑒 + 

𝑖𝑗 

)
𝛿
(
𝑚 𝑖 , 𝑚 𝑗 

)

− 

1 
2 𝑊 

+ + 2 𝑊 

− 

∑
𝑖𝑗 

(
𝑤 

− 
𝑖𝑗 
− 𝑒 − 

𝑖𝑗 

)
𝛿
(
𝑚 𝑖 , 𝑚 𝑗 

)

here w 

+ is the number of positively weighted edges and w 

− is the num-

er of negatively weighted edges. The 𝑒 𝑖𝑗 term represents the expected

umber of edges between two nodes i and j , and the 𝛿( 𝑚 𝑖 , 𝑚 𝑗 ) term is 1

f the nodes i and j are in the same module and 0 if they are not in the

ame module. Notice that negatively weighted edges are given less influ-

nce than positively weighted edges in computing modularity ( Rubinov

 Sporns, 2011 ). 

.5. Developmental model 

We then utilized the same multi-level modeling approach used for

he behavior to model change in brain networks across blocks, waves,

nd age: 

𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡 𝑦 𝑖𝑗 = 𝛾00 + 𝛾10 𝐹 𝑖𝑟𝑠𝑡 𝐻𝑎𝑙 𝑓 𝑖𝑗 + 𝛾20 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻𝑎𝑙 𝑓 𝑖𝑗 + 𝛾30 𝑊 𝑎𝑣 𝑒 𝑖𝑗 

+ 𝛾40 𝐴𝑔 𝑒 𝑖𝑗 + 𝛾50 𝐴𝑔𝑒 
2 
𝑗 
+ 𝛾60 𝐹 𝑖𝑟𝑠𝑡 𝐻𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝑊 𝑎𝑣 𝑒 𝑖𝑗 

+ 𝛾70 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝑊 𝑎𝑣 𝑒 𝑖𝑗 + 𝛾80 𝐹 𝑖𝑟𝑠𝑡 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔 𝑒 𝑖𝑗 
+ 𝛾90 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔 𝑒 𝑖𝑗 + 𝛾100 𝐹 𝑖𝑟𝑠𝑡 𝐻 𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔𝑒 2 𝑖𝑗 
+ 𝛾110 𝑆𝑒𝑐𝑜𝑛𝑑 𝐻𝑎𝑙 𝑓 𝑖𝑗 ∗ 𝐴𝑔𝑒 2 𝑖𝑗 + 𝛾120 𝑊 𝑎𝑣 𝑒 𝑖𝑗 ∗ 𝐴𝑔 𝑒 𝑖𝑗 

2 
+ 𝛾130 𝑊 𝑎𝑣 𝑒 𝑖𝑗 ∗ 𝐴𝑔𝑒 𝑖𝑗 + 𝑢 0 𝑗 + 𝑟 𝑖𝑗 a  

5 
.6. Probing interactions 

To better understand potential interaction effects involving age in

he models of behavior and brain, we probed the effects at four dis-

inct ages ( Fig. 3 ). Ages were chosen to be evenly spaced (approxi-

ately standard deviation distances within the sample) and roughly

orrespond to different developmental periods including early, middle,

nd late adolescences, as well as young adulthood (e.g., Shulman et al.,

016 ). Interaction effects in the model are continuous across the age

ange and therefore leverage information across the sample. However,

ue to lower coverage of observations at later ages, the simple slope esti-

ates when probing the interaction at these levels have correspondingly

arger standard errors. 

. Results 

.1. Descriptives and age-only growth models 

Before formally fitting models to the data, we assessed descriptives

f both learning rate and network modularity as a function of wave and

ge (taking the mean of within-session data). Connected data points rep-

esent the same individual across time and waves are labeled with differ-

nt colors ( Fig. 4 A & B). As reported earlier ( Peters and Crone, 2017 ),

earning rate was high overall with late adolescents performing near

eiling, and either leveling off or declining for older participants. Al-

hough not constrained in the same way as learning performance at up-

er values, neural network modularity appears to increase at earlier ages

nd declining at later ages (see Supplemental for formal regions of sig-

ificance analysis for all models). As our first model building step, we

t a relatively simple model by including linear and quadratic effects

f age to both learning rate and network modularity. Predicted values

f each measure were obtained from the mixed-effects model ( Fig. 4 C

 D; see Table 1 ), confirming these trends. However, this simple model

either captures within-session practice-related change, nor does it dis-

ggregate within-person changes due to experience (i.e., across waves)

nd between-person changes due to maturation (i.e., across age). We
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Fig. 4. Learning (A) and Network Modularity (B) Across Age and Wave. Means of within-session data were plotted against age to visualize potential time-related 

trends. Wave number was indicated by color, and data from the same individual were connected by a solid line. If individuals only contributed data at one timepoint, 

data was indicated with a lone point. Linear mixed-effects models that only consider the mixed effect of age suggest quadratic effects peaking in late adolescence for 

learning performance (C), and for network modularity (D). These models fail to consider effects of experience (i.e., wave) and within-session practice effects. 

Table 1 

Model output from age-only models. 

Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.937 0.004 < 0.001 359.604 0.994 0.011 < 0.001 361.688 

Age std 0.277 0.023 < 0.001 1003.133 0.275 0.023 < 0.001 1992.711 

Age 2 std − 0.140 0.021 < 0.001 1924.892 − 0.209 0.020 < 0.001 3523.698 

Random Effects 

𝜎2 0.010 0.055 

𝜏00 0.002 ID 0.030 ID 

ICC 0.18 0.35 

N 297 ID 297 ID 

Observations 4799 4799 

Marginal R 2 / Conditional R 2 0.065 / 0.236 0.075 / 0.402 

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects reported. 𝜎2 = level 1 

random effect. 𝜏00 = higher level random effect (effect specified by subscript). ICC = Intraclass correlation. N = number 

of units at each level. 

n  

fi
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l  

i  
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l  

(

ext formally tested these effects using the developmental model speci-

ed above. 

.2. Behavioral improvements in learning performance 

We began by fitting an unconditional random effects ANOVA model

i.e., a random intercept at each level) to determine the distribution of

ariance across the three levels of the model (level 1 = within-session;

evel 2 = waves; level 3 = individual). Results indicated that the major-
6 
ty of variance in learning rate was between trials within the same scan

ession (68.7%), an additional 19.3% of the variance was between scan

essions within the same individual (i.e., change across waves), and the

emaining 11.9% variance was accounted for by between-individual dif-

erences in overall learning performance (see Table 2 for full details).

owever, to establish a baseline for future models, we also fit a two

evel random effects ANOVA model where level 1 and 2 are collapsed

see Table 2 ). 
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Table 2 

Model output from random effects ANOVA models. 

3-Level Model Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.927 0.003 < 0.001 256.681 0.949 0.012 < 0.001 284.150 

Random Effects 

𝜎2 0.009 0.048 

𝜏00 0.002 ID:Wave 0.014 ID:Wave 

0.002 ID 0.030 ID 

ICC 0.31 0.49 

N 297 ID 297 ID 

3 Wave 3 Wave 

Observations 4799 4799 

Marginal R 2 / Conditional R 2 0.000 / 0.313 0.000 / 0.486 

2-Level Model Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.925 0.003 < 0.001 271.214 0.946 0.012 < 0.001 289.668 

Random Effects 

𝜎2 0.010 0.056 

𝜏00 0.003 ID 0.037 ID 

ICC 0.22 0.40 

N 297 ID 297 ID 

Observations 4799 4799 

Marginal R 2 / Conditional R 2 0.000 / 0.218 0.000 / 0.398 

Note: All effects rounded to the third decimal place for display purposes. 𝜎2 = level 1 random effect. 𝜏00 = higher level 

random effect (effect specified by subscript). ICC = Intraclass correlation. N = number of units at each level. 

Table 3 

Model output from main effects-only models. 

Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.927 0.004 < 0.001 717.508 0.987 0.013 < 0.001 520.937 

First Half std 0.025 0.016 0.113 4473.435 0.088 0.013 < 0.001 4491.297 

Second Half std 0.022 0.016 0.151 4473.468 0.121 0.013 < 0.001 4491.319 

Wave std 0.023 0.018 0.198 1205.547 − 0.004 0.019 0.845 694.861 

Age std 0.250 0.31 < 0.001 299.628 0.285 0.039 < 0.001 311.080 

Age 2 std − 0.136 0.021 < 0.001 1941.031 − 0.209 0.020 < 0.001 3747.423 

Random Effects 

𝜎2 0.010 0.051 

𝜏00 0.002 ID 0.030 ID 

ICC 0.18 0.37 

N 297 ID 297 ID 

Observations 4799 4799 

Marginal R 2 / Conditional R 2 0.060 / 0.232 0.112 / 0.441 

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects reported. 𝜎2 = level 1 

random effect. 𝜏00 = higher level random effect (effect specified by subscript). ICC = Intraclass correlation. N = number 

of units at each level. 
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.2.1. Separating effects of age and wave 

Next, we fit a mixed effects model with fixed predictors of learn-

ng rate at each level to assess the separable effects of age and wave

n learning rate. Importantly, wave and age were sufficiently decou-

led in this model ( r = 0.397, variance inflation factor = 1.19, SE in-

ation = 1.08 times), and all predictors were centered. In this model

either effect of the within-session practice predictors were significant.

his suggests that there was no total systematic change in learning rate

ithin a scan session net the effects of wave and age, nor was there a

ignificant within-person effect of wave. In other words, neither within-

ession practice or between-session experience related to increased per-

ormance when accounting for the age-related change. However, indi-

iduals showed significant linear ( 𝛽 = 0.250, SE = 0.031, p < .001)

nd quadratic ( 𝛽 = − 0.136, SE = 0.021, p < .001) effects of age on

earning rate. All results are reported as standardized effects ( Table 3 ).

 likelihood ratio test suggests that this model offers an improvement

ver the unconditional model ( ΔAIC = − 158.7; 𝜒2 
𝑑𝑖𝑓𝑓 

= 168.71, df = 5,

 < .001). 
7 
.2.2. Learning rate improvements show interactions across levels of time 

Finally, we tested the interactive model of learning and development

or participants’ learning rates. To do so, we added two-way cross-level

nteraction terms to the previous model. Three-way interactions were

xplored but were not found to be significant and so the model with

wo-way interactions was retained. All predictors were centered to cre-

te interaction terms which were uncorrelated with the main effects

nd to facilitate the interpretation of main effects in the presence of

nteraction terms ( Aiken and West, 1991 ). There was a significant posi-

ive interaction of wave and the quadratic effect of age on learning rate

 𝛽 = 0.083, SE = 0.021, p < .001) such that at each later waves, the

uadratic decreases lessen. To probe this interaction, we plotted mean

ithin-session level increases in learning rate across age for each wave

 Fig. 5 ). Results suggest that without repeated exposure to the task (i.e.,

xperience) there are predicted decreases in learning performance at

ounger ages (red trajectory), but that practice helps compensate and

ause performance to level off instead (green and blue trajectories). The

uadratic effect where wave is coded as zero (i.e., wave 2) reflects the
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Fig. 5. Increased Experience Impacts Learn- 

ing Trajectories. Compared with first expo- 

sure (red), accumulating experience (green and 

blue) between waves tended to predict better 

learning performance at later ages, compensat- 

ing for expected declines in performance dur- 

ing young adulthood. 

Table 4 

Model output from interactions models. 

Learning Rate Network Modularity 

Predictors Estimates SE P-Value df Estimates SE P-Value df 

Intercept 0.935 0.005 < 0.001 768.901 0.997 0.014 < 0.001 513.739 

First Half std − 0.007 0.020 0.751 4473.838 0.094 0.017 < 0.001 4495.715 

Second Half std 0.021 0.020 0.297 4473.787 0.115 0.017 < 0.001 4495.776 

Wave std 0.011 0.031 0.722 3143.488 − 0.044 0.029 0.131 1734.974 

Age std 0.160 0.044 < 0.001 650.191 0.327 0.049 < 0.001 471.938 

Age 2 std − 0.080 0.042 0.053 615.163 − 0.261 0.047 < 0.001 513.285 

First Half ∗ Wave std − 0.016 0.022 0.469 4484.108 − 0.036 0.019 0.058 4508.580 

Second Half ∗ Wave std − 0.044 0.022 0.048 4484.488 − 0.022 0.019 0.244 4508.591 

First Half ∗ Age std − 0.049 0.022 0.027 4466.136 0.068 0.019 < 0.001 4482.736 

Second Half ∗ Age std 0.025 0.022 0.252 4466.143 − 0.004 0.019 0.818 4482.736 

Wave ∗ Age std − 0.038 0.024 0.111 870.145 0.002 0.026 0.947 648.001 

First Half ∗ Age 2 std 0.047 0.024 0.048 4464.637 − 0.027 0.020 0.182 4481.364 

Second Half ∗ Age 2 std − 0.025 0.024 0.292 4464.630 − 0.002 0.020 0.906 4481.360 

Wave ∗ Age 2 std 0.083 0.021 < 0.001 4746.733 0.057 0.018 0.001 4674.686 

Random Effects 

𝜎2 0.010 0.051 

𝜏00 0.002 ID 0.030 ID 

ICC 0.19 0.37 

N 297 ID 297 ID 

Observations 4799 4799 

Marginal R 2 / Conditional R 2 0.066 / 0.239 0.126 / 0.449 

Note: All effects rounded to the third decimal place for display purposes. std = standardized effects reported. 𝜎2 = level 1 

random effect. 𝜏00 = higher level random effect (effect specified by subscript). ICC = Intraclass correlation. N = number 

of units at each level. 
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ffects seen in the age-only model and is consistent with prior research

 Peters et al., 2016 ; Peters and Crone, 2017 ), however, by including in-

eractions with experience, we show how that total effect is influenced

y repeated exposure to the task (see Table 4 for full details). A likeli-

ood ratio test suggests that this model offers an improvement over the

ain-effects only model ( ΔAIC = − 22; 𝜒2 
𝑑𝑖𝑓𝑓 

= 38.03, df = 8, p < .001).

n a follow-up sensitivity analysis, we found that this pattern of effects

eld when including IQ as a covariate. 

.3. Changes in network modularity 

Similar to the behavioral analysis, we first fit an unconditional ran-

om effects ANOVA model to participants’ neural network modularity

ata. The majority of variance in network modularity was between trials

ithin the same scan session (51.4%), relatively less (15.6%) of the vari-
8 
nce was between scan sessions within the same individual (i.e., change

cross waves), with the remainder (33.0%) accounted for by between-

ndividual differences in network modularity ( Table 2 ). 

.3.1. Separating effects of age and wave 

Next, we fit a main-effects only model with predictors including task

lock, wave, and age. There were linear ( 𝛽 = 0.285, SE = 0.0.39, p <

001) and quadratic ( 𝛽 = − 0.136, SE = 0.021, p < .001) effects of age,

uch that network modularity tended to increase early in adolescence

nd level off and decrease across late adolescence and young adult-

ood. Additionally, modularity increased across blocks within waves

i.e., practice) across both halves of the task (first half: 𝛽 = 0.088,

E = 0.013, p < .001; second half: 𝛽 = 0.121, SE = 0.013, p < .001).

here was no independent effect of wave on network modularity. This

uggests that while modularity tends to increase within-session across
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Fig. 6. Experience and Age Impact Brain Network Organization. A) Accumulating experience (green and blue) across waves predicts increased network modularity 

compared with first exposure (red), however these differences only emerge during the transition from adolescence to young adulthood. B) Increased age predicts 

greater positive gains in network modularity across blocks in the first half of the task. 
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he task and with older individuals, there is no independent effect of

epeated exposure to the same task environment ( Table 3 ). As expected,

his model offered improvements over the random effects ANOVA model

 ΔAIC = − 476.3; 𝜒2 
𝑑𝑖𝑓𝑓 

= 486.3, df = 5, p < .001). 

.3.2. Network modularity shows interactions across levels of time 

We next fit the interactive model of development to the network

odularity data. Similar to the model with learning performance, there

as a significant interaction of wave and the quadratic effect of age on

etwork modularity ( 𝛽 = 0.057, SE = 0.018, p = .001; Table 4 ). When

robed ( Fig. 6 A), there was a similar compensatory pattern to the one

een in learning performance, such that experience across waves (green

nd blue) predicted positive shifts in modularity at later ages compared

ith the first exposure to the task (red). Interestingly, these differences

ppear to only emerge during the transition from adolescence to young

dulthood, whereas increased experience does not impact modularity at

ounger ages. Furthermore, there was a significant positive interaction

f age and practice in the first half of the task ( 𝛽 = 0.068, SE = 0.019, p

 .001), such that older individuals showed more rapid gains in modu-

arity across the first half of the task ( Fig. 6 B). This model offered con-

inued improvements over the main effects only model ( ΔAIC = − 18.18;
2 
𝑑𝑖𝑓𝑓 

= 34.18, df = 8, p < .001). 

.3.3. Predicting learning with network modularity 

Finally, we tested whether network modularity predicts learning per-

ormance above and beyond the effects of time. To do so, we entered net-

ork modularity and interaction terms between modularity and the time

redictors into the model. In addition to similar effects of the time pre-

ictors, this model revealed a significant positive interaction between

etwork modularity and age ( 𝛽 = 0.062, SE = 0.023, p = .007; Table 5 ).

robing this interaction ( Fig. 7 ), we plotted the model-implied trajec-

ory of learning rate across age for individuals who showed relatively

ow ( − 1 SD), mean, and relatively high ( + 1 SD) network modularity.

his showed that individuals who evinced relatively high network mod-

larity (blue trajectory) tended to show higher learning rates, but only

fter the transition from adolescence to young adulthood (see region

f significance analysis in Supplement for details). A likelihood ratio
9 
est suggests that including the brain as a predictor increased model fit

 ΔAIC = − 4.1; 𝜒2 
𝑑𝑖𝑓𝑓 

= 20.10, df = 8, p = .010). 

. Discussion 

The contributions of experience versus development can be difficult

o tease apart, especially within a longitudinal sample ( Jolles and Crone,

012 ; Telzer et al., 2018 ) because age, experience, and practice are

onfounded. To test an interaction model of experience and develop-

ent, we utilized a novel longitudinal approach to separate out vari-

bility in learning performance and brain network modularity along

ifferent timescales: 1) within-session practice across blocks of learn-

ng, 2) within-person, across-waves, and 3) across age. Briefly, we found

hat learning performance tends to improve throughout adolescence and

evel off into adulthood. In contrast, network modularity appears to peak

round middle adolescence and then shows declines across young adult-

ood. However, both of these effects are moderated by the amount of

xperience individuals have accumulated across waves, with more ex-

erience relating to higher performance and network modularity dur-

ng learning. When considering the brain-behavior relationships, rela-

ively higher modularity predicts better learning performance but only

t older ages, suggesting that the importance of individual differences

round developmental trends for determining behavioral outcomes may

epend on timing in development. We discuss each of these findings in

reater detail below. 

.1. Multi-Level changes in learning rate and brain networks 

Even without probing cross-level interactions, a major advantage of

he models employed here is the separation of variance in the outcome

cross levels of time. In the current study, we found that behavioral im-

rovements in learning occur across age, but do not change systemati-

ally across waves or blocks within the task. In contrast, network mod-

larity showed systematic within-session increases as well as positive

ge effects, while showing no systematic changes across waves. While

hese total effects should be interpreted with caution given the pres-

nce of higher-order interaction effects, they nevertheless highlight an
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Fig. 7. Differential Impacts of Network Modu- 

larity on Learning Rate By Age. At earlier ages, 

increased modularity did not predict increased 

learning, but this relationship emerges follow- 

ing adolescence. 

Table 5 

Model output from brain as predictor of learning performance model. 

Learning Rate 

Predictors Estimates SE P-Value df 

Intercept 0.935 0.005 < 0.001 794.679 

First Half std − 0.003 0.021 0.886 4476.805 

Second Half std 0.006 0.021 0.775 4482.941 

Wave std − 0.056 0.067 0.401 4670.922 

Age std 0.174 0.045 < 0.001 718.911 

Age 2 std − 0.086 0.043 0.046 679.282 

First Half ∗ Wave std − 0.018 0.022 0.415 4481.722 

Second Half ∗ Wave std − 0.040 0.022 0.072 4485.072 

First Half ∗ Age std − 0.054 0.023 0.018 4472.145 

Second Half ∗ Age std 0.005 0.023 0.822 4502.070 

Wave ∗ Age std − 0.034 0.025 0.172 987.428 

First Half ∗ Age 2 std 0.044 0.025 0.073 4469.835 

Second Half ∗ Age 2 std − 0.013 0.025 0.604 4483.426 

Wave ∗ Age 2 std 0.076 0.022 0.001 4754.347 

Modularity std − 0.014 0.029 0.627 4764.879 

Modularity ∗ First Half std 0.006 0.021 0.786 4532.995 

Modularity ∗ Second Half std 0.044 0.021 0.044 4545.020 

Modularity ∗ Wave std 0.061 0.061 0.317 4774.206 

Modularity ∗ Age std 0.062 0.023 0.007 4222.697 

Modularity ∗ Age 2 std − 0.004 0.025 0.888 4389.408 

Modularity ∗ Wave ∗ Age std 0.035 0.021 0.093 4776.952 

Modularity ∗ Wave ∗ Age 2 std − 0.043 0.021 0.041 4724.872 

Random Effects 

𝜎2 0.010 

𝜏00 ID 0.002 

ICC 0.19 

N ID 297 

Observations 4799 

Marginal R 2 / Conditional R 2 0.071 / 0.243 

Note: All effects rounded to the third decimal place for display purposes. 

std = standardized effects reported. 𝜎2 = level 1 random effect. 𝜏00 = higher 

level random effect (effect specified by subscript). ICC = Intraclass correla- 

tion. N = number of units at each level. 
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f  
dvantage of the growth model employed here ( McCormick, preprint ).

ontrolling for the effects of repeated exposure to the task environment

llow us to be more confident that the effects of age are due to matura-

ional forces rather than comfort or familiarity with the task or scanner

nvironment ( Bell, 1953 ; Jolles and Crone, 2012 ). Even if these effects

re not significant, as is the case here, these models allow us to check

ur assumptions about the processes underlying longitudinal change. 
10 
.2. Cross-level interactions between growth at different scales 

More interestingly, there were significant cross-level interactions be-

ween time predictors in the models for both behavior and brain tra-

ectories. For both outcomes of interest, results supported the idea of

n interactive model of development, where the impacts of experience

hange across age. For learning rate, the model recapitulated previous

ndings in this task ( Peters and Crone, 2017 ) showing that learning

ate reaches peak levels around late adolescence, and is consistent with

ther findings showing improvements in learning across adolescence

 van Duijvenvoorde et al., 2008 ; Peters et al., 2016 ; McCormick and

elzer, 2017a ). This highlights that the model with growth at multi-

le levels accommodates the same inferences made with the age-only

odels. In this way, adopting the current approach offers advantages

ithout limiting the inferences made about developmental trajectories.

ndeed, the interaction of wave and the quadratic effect of age on learn-

ng performance reveals that changes in behavior are driven by complex

nterplays between development and experience, with experience ap-

earing to play different roles in supporting overall performance across

dolescence and young adulthood. Specifically, probing the interaction

hows that increased experience compensates for the main effect of age,

oosting behavioral performance gains further into to young adulthood.

xtensive experience (blue trajectory in Fig. 5 ) blunts otherwise pre-

icted declines and stabilizes performance at the peak achieved during

iddle to late adolescence. However, this experience-related improve-

ent is not universal across the developmental period considered, as

id-adolescent performance is heightened even at first wave. This might

uggest that during adolescence, learning is universally improved, and

hen individual differences become more relevant as individuals tran-

ition out of this period (see Pattwell et al., 2011 for a similar idea

n the area of contextual fear during adolescence). None of the mod-

ls tested showed within-session effects on learning performance, al-

hough we may have been under-powered to detect such effects given

he restraints of the task (i.e., there was a maximum of 12 trials per

lock regardless of learning). Overall, these results are a powerful val-

dation of the model, converging with previous findings on the same

ata while simultaneously allowing for the addition of more complex

ime-dependent relationships. 

Findings with the brain showed a distinct pattern of effects from

rowth in learning performance. Previous work in this area has shown

evelopmental changes during learning in regional activation of the

ronto-parietal ( Peters et al., 2016 ) and striatal regions ( Peters and
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rone, 2017 ; McCormick and Telzer, 2017a ), as well as seed-based con-

ectivity with the orbitofrontal cortex ( McCormick and Telzer, 2017a ).

n the current study, we instead examine changes in brain network

rganization during learning. Learning over short periods of time has

een shown to alter neural network organization ( Bassett et al., 2011 ;

elesford et al., 2017 ; Gerraty et al., 2018 ), but these processes have not

een compared with long-term changes due to maturation previously.

n the current study, we show changes in network modularity both at

he short-term within-session and long-term developmental level. In the

hort term, playing repeated blocks within-session is associated with

eightened modularity between brain networks involved in learning,

nd this effect across the first half of the task increases with age. This

uggests that older individuals are able to segregate (i.e., high within-

etwork and low between-network connectivity) the relevant networks

f regions to a greater extent than younger participants. The quadratic

otal effect of age suggests that rather than a linear increase in modu-

arity across experience across waves and maturation, network modu-

arity instead decreases at later ages ( Fig. 6 A), with late adolescents and

oung adults showing decreasingly modular networks compared with

iddle-adolescents (also consistent with the age-only model ( Fig. 4 D).

his pattern of network connectivity evolves similarly across develop-

ent to striatal activation during learning versus application ( Peters and

rone, 2017 ). However, the interaction of this age effect with wave

hows an analogous effect as seen in learning performance, where ex-

erience appears to blunt expected decreases in network modularity in

oung adulthood. While this compensatory effect does not counteract

he overall decreases as seen in the behavioral results, it does serve to

hift network organization toward a more adolescent-typical phenotype.

or both behavioral performance and network modularity, the pattern

f results seen here clearly support an interactive view of experience

nd development, where maturation constrains the effect of experience

ather than simply serving as a form of extended practice. 

Regardless of the effects of experience (i.e., wave), there appear to

e more substantial decreases in modularity compared with behavioral

erformance. In the context of learning and development, this pattern

f long-term change in neural networks might have two potential ex-

lanations. First, it might be that brain networks show the greatest ca-

acity for modularity during adolescence, and this capacity supports

he heightened flexible learning ( Johnson and Wilbrecht, 2011 ; Casey,

015 ) and feedback sensitivity ( Peters et al., 2016 ; van Duijvenvoorde

t al., 2014 ; McCormick and Telzer, 2017a ; b; 2018b ) that characterize

his developmental period regardless of practice or exposure effects. Al-

ernatively, these changes might reflect differences in how the brain per-

orms similar actions across development. For instance, high modularity

ight be necessary for adolescents to achieve high performance, while

dults might not require this to the same degree. For instance, stabiliz-

ng learning performance with experience is still associated with overall

albeit blunted) decreases in modularity during young adulthood. This

ight also be consistent with an expansion-normalization theory of de-

elopment and learning ( Wenger et al., 2017 ) where brains show initial

hanges in structure and function (e.g., increased synaptic formation, in-

reased activation) that then return to baseline without compromising

ehavioral performance. These hypotheses are not mutually exclusive,

nd the effects probed here might suggest both that adolescent brains

upport improved performance regardless of other influences (e.g., ex-

erience) and that returns to network phenotypes seen in younger ado-

escents does not lead to a complete collapse of behavioral performance.

.3. Changing brain-behavior relationships 

While characterizing trajectories of brain and behavior separately is

nformative, we also examined whether individual differences in net-

ork organization might predict learning performance above and be-

ond developmental ( Peters and Crone, 2017 ) and experiential effects,

s well as whether that relationship changed across time. Consistent

ith the interaction view of development and experience, significant in-
11 
eractions between network modularity and time predictors in the model

evealed a significant moderation of brain-behavior relationships across

ge. This means that in early adolescence, there is no effect of increased

odularity on learning performance, but that increased modularity pre-

icts enhanced learning rates for older individuals. These findings are

onsistent with previous work in young adults showing positive associa-

ions between network modularity and successful learning ( Bassett et al.,

011 ; Ellefsen et al., 2015 ) and higher-order cognitive processing gener-

lly ( Kitzbichler et al., 2011 ; Braun et al., 2015 ). However, these positive

ssociations at later ages are particularly interesting in the context of

he developmental trends detected, where older individuals on average

how decreased modularity across waves. Despite normative decreases

n network modularity during late adolescence and young adulthood,

ndividuals with higher modularity show greater learning performance.

his might lend support to the first explanation of the interaction ef-

ect of age and wave – that adolescent-typical neural phenotypes offer

dvantages in performance (e.g., Johnson and Wilbrecht, 2011 ; Jones

t al., 2014 ; van van Duijvenvoorde et al., 2016 ). If young adults simply

id not need highly modular networks to perform what is a relatively

asy task for them (i.e., the expansion-renormalization hypothesis), then

e would expect that the relationship between modularity and learning

erformance would decrease. However, the positive interaction effect

 Fig. 7 ) suggests that older individuals show an even greater dependence

n high modularity for successful learning performance compared with

ounger participants. This pattern of results presents a compelling case

or adolescent-specific advantages in learning. For older individuals, re-

aining “immature, ” but apparently more-optimal, network configura-

ions helps boost behavioral performance. 

.4. Conclusions 

In summary, we took a novel modeling approach to disaggregate

hange in learning and neural networks across different timescales.

hile we focus on learning here, these results highlight the potential

exibility of mixed-effects models for probing complex developmental

rajectories in other domains. We found nonlinear patterns of devel-

pment for both behavior and brain, which were moderated by ex-

erience. Specifically, greater experience with the task across waves

upported increased learning and network modularity relative to com-

aratively naïve subjects at later ages, highlighting that these effects

an potentially bias age-related inferences unless explicitly included in

ongitudinal models. Future research using accelerated longitudinal de-

igns (or see McCormick, preprint for alternatives) should take care to

odel practice/exposure-related effects to remove this confound. Fi-

ally, we showed changing brain-behavior relationships across adoles-

ence, where higher network modularity predicts increased learning

erformance only following the transition into young-adulthood. These

esults present compelling support for an interactive view of experi-

nce and development, where changes in the brain impact behavior

n context-specific fashion based on developmental goals ( Crone and

ahl, 2012 ; Romer et al., 2017 ). 
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