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Abstract

B Research on adolescence has largely focused on the particu-
lar biological and neural changes that place teens at risk for neg-
ative outcomes linked to increases in sensation-seeking and
risky behavior. However, there is a growing interest in the adap-
tive function of adolescence, with work highlighting the dual na-
ture of adolescence as a period of potential risk and opportunity.
We examined how behavioral and neural sensitivity to risk and
reward varies as a function of age using the Balloon Analog Risk
Task. Seventy-seven children and adolescents (ages 8-17 years)
completed the Balloon Analog Risk Task during an fMRI session.

INTRODUCTION

Adolescence has been largely recognized as a period of
heightened risk and poor decision-making; however, ad-
olescence is also a period of opportunity for learning and
skill acquisition. Although neurodevelopmental research
has begun to shed light on neural mechanisms that sup-
port changes in risk-taking and sensation-seeking behav-
iors during adolescence (Steinberg et al., 2008), empirical
work and theoretical models of adolescent brain develop-
ment focus on how these behaviors are the result of de-
ficient or ineffective circuitry (see Telzer, 2016). Several
neurobiological models have proposed that early-maturing
subcortical regions coupled with slower-developing
prefrontal regions underlies increased risk taking during
adolescence (Steinberg, 2010; Casey, Jones, & Hare,
2008; Ernst, Pine, & Hardin, 2006), comparing adolescent
behavior to a car in full throttle but with ineffective breaks
(Steinberg, 2010). Although these heuristics are useful
tools (see Casey, 2015; but see Pfeifer & Allen, 2016), they
can pathologize adolescence as a period of deficiency and
overlook the potentially adaptive role of adolescence as a
period of opportunity for learning and the acquisition of
new ideas, skills, and interests (Crone & Dahl, 2012).
Emerging evidence supports the idea of adolescence as
a period of adaptive flexibility. Adolescent rodents (Pattwell
et al., 2012), nonhuman primates (Spear, 2000), and
humans (Humphreys, Lee, & Tottenham, 2013) show be-
havioral patterns that support increased flexibility, even at
potential risk to their health and reproductive success. For
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Results indicate that adolescents show greater learning through-
out the task. Furthermore, older participants showed increased
neural responses to reward in the OFC and ventral striatum, in-
creased activation to risk in the mid-cingulate cortex, as well as
increased functional OFC-medial PFC coupling in both risk and
reward contexts. Age-related changes in regional activity and in-
terregional connectivity explain the link between age and in-
creases in flexible learning. These results support the idea that
adolescents’ sensitivity to risk and reward supports adaptive
learning and behavioral approaches for reward acquisition. |l

instance, human adolescents show age-related increases in
risk taking as well as adolescent-specific increases in learn-
ing in a risk-taking context (Humphreys et al., 2016), and
adolescents show greater tolerance for ambiguity during
risk taking than do adults (Tymula et al., 2012), which
might promote learning during adolescence. Adolescent
mice also show increased flexibility and learning when
pursuing rewards (Johnson & Wilbrecht, 2011). This flexi-
bility supports adolescents’ learning of the environment
and helps them gain access to food and reproductive
opportunities (Vigilant et al., 2015). In light of this
research, some have suggested that the unique configura-
tion of adolescent neural systems serves an adaptive func-
tion necessary for appropriate development (Casey, 2015;
Crone & Dahl, 2012).

Although no empirical studies have explored the neuro-
development of learning and flexible behavior in risky
contexts, some initial evidence highlights the potentially
adaptive function of still-developing neural states for
learning. Although the heuristic models utilized in ado-
lescent neurodevelopmental research generally highlight
the maladaptive nature of delayed prefrontal develop-
ment (see Casey, 2015), slower maturation of PFC may
actually promote an individual’s ability to flexibly adapt
to new contexts. For instance, early adversity (e.g., mater-
nal deprivation, neighborhood violence) is associated
with accelerated life history trajectories (Ellis, Figueredo,
Brumbach, & Schlomer, 2009) including early transition
to adult-like PFC functioning (Gee et al., 2013). Although
this acceleration is hypothesized to serve a compensatory
role, early transition to adult neural states is also associ-
ated with developmental trade-offs that can result in
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suboptimal outcomes such as decreases in plasticity and
academic achievement (Shaw et al., 2006), suggesting that
later-developing PFC function may be adaptive and sup-
port learning and skill acquisition.

Despite this initial evidence, we know relatively little
about neurodevelopmental mechanisms that support
age-related changes in flexibility and learning. To address
this gap, we examined flexible learning in the context of
risk and reward contingencies. Youth ages 8-17 years
completed the Balloon Analog Risk Task (BART; Lejuez
et al., 2002) during an fMRI session. The BART mirrors
real-world behavior in that risky behavior is rewarded
up until a point but then becomes detrimental to the in-
dividual’s goals. The task creates a context for investigat-
ing learning since participants can use feedback they
receive on each trial to modify or reinforce their behavior
(Humphreys et al., 2016). We examined age-related
changes in risk-taking behavior across the task as well
as age-related differences in neural activation and con-
nectivity in motivational (e.g., ventral striatum [VS] and
OFC) and regulatory (e.g., lateral PFC and anterior cingu-
late) regions involved in learning and goal-directed be-
havior. We hypothesized that adolescents would be
more likely than younger participants to explore and bet-
ter learn the parameters of the task. Adolescents could
then utilize this learning to guide their risk-related behav-
ior in pursuit of rewards. We further hypothesized that
neurodevelopmental changes in motivational and regula-
tory regions would mediate these age-related increases in
flexible learning.

METHODS
Participants

Eighty healthy children and adolescents completed an
fMRI scan. Two participants were excluded because of ex-
cessive head motion (>2.0 mm slice-to-slice on 210% of
slices) during the session, and an additional participant
was excluded because of corrupted/missing data, leaving
77 participants in the final sample (41 girls; M,ge =
14.23 years, SD = 2.76, range = 8.1-17.7 years). Partici-
pants (54 European American, 18 African American,
1 Asian American, 2 Latin American, and 3 mixed/multiple
ethnicity) provided written consent and assent in accor-
dance with the University of lllinois’ institutional review
board.

Risk and Reward Task

Participants completed a version of the BART, a well-
established experimental paradigm (Qu, Galvan, Fuligni,
Lieberman, & Telzer, 2015; Telzer, Fuligni, Lieberman,
Miernicki, & Galvan, 2015; Lejuez et al., 2002) that mea-
sures participants’ willingness to take risks in the pursuit
of rewards. Before the scan, participants were shown a
box of age-appropriate prizes and were told that the
more points they earned on the task, the more prizes
that they could select at the end of the neuroimaging ses-
sion. In reality, all participants were allowed to choose
three prizes regardless of the number of points they
earned. During the scan, participants were presented
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Figure 1. BART. Participants can choose to Pump to increase the size of the balloon or to Cash Out to add points to their Points Meter. However, if

participants pump too many times, the balloon will explode.
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with a series of 24 balloons that they could choose to
pump up in order to accrue points (Figure 1). Each
pump increased the risk that the balloon would explode,
and if the balloon exploded, participants lost all points
they had accrued from that balloon. At any point after
the first pump, participants could choose to cash out
their points for that balloon, which were added to their
total for the task. The running total of points earned was
presented on the screen as a points meter. Participants
were instructed that their goal was to earn as many points
as they could during the task. Each event (e.g., larger
balloon following a pump, new balloon following cashed
or exploded trial) was separated with a random jitter
(500-4000 msec). Balloons were presented in a fixed or-
der, with the explosion rate ranging from 4 to 10 pumps,
although this was not made explicit to participants. The
task was self-paced and would not advance unless the
participant made the choice to either pump or cash-out.

Behavior Modeling

We measured several indices of behavior to tap risk be-
havior and learning on the task. “Risk behavior” repre-
sents participants’ willingness to engage in risk taking.
This was calculated as the average number of pumps
on cashed trials. The number of pumps on explosion tri-
als was not included because those trials are artificially
constrained and end before participants have reached
their maximum tolerance for risk (Lejuez et al., 2002).
This metric has been used widely as an index of risk tak-
ing and is associated with higher levels of self-reported
risk-taking behavior in the real world both concurrently
and longitudinally (Qu et al., 2015; Telzer et al., 2015;
Lejuez et al., 2002).

“Learning” was indexed by participants’ feedback sen-
sitivity or how likely they are to use information from the
previous trial to guide their behavior on each subsequent
trial and to adapt when their current behavior is resulting
in maladaptive outcomes (Humphreys et al., 2015). To
obtain this index, we used hierarchical linear modeling
(Raudenbush & Bryk, 2002), in which trials (24 total)
were nested within participants, and the outcome vari-
able was the number of pumps on a given trial. We mod-
eled whether the number of pumps on a given trial
varied depending on the outcome of the previous trial.
Consistent with prior studies (Ashenhurst, Bujarski,
Jentsch, & Ray, 2014; Mata, Hau, Papassotiropoulos, &
Hertwig, 2012), our Level 1 equation was

Number of Pumps;; = by + by, (Explosion(]\,_l))
+ by (Explosion( N)>
+ b3;(Trial Number) + ¢;

Total pumps on a particular trial (7) for a particular ado-
lescent (j) was modeled as a function of the average
number of pumps across the task (by) and whether the

previous trial (by;) was an explosion or cash-out (coded
Explosiongy — 1y = 0; Cash-Outpy — 1y = 1). In addition,
we included two controls, including whether the current
trial resulted in an explosion or a cash-out (b,; coded
Explosionyy, = 1; Cash-Outy, = 0) and the trial
number (b3).

To use the learning index in our neural and behavioral
analyses, we extracted empirical Bayes estimates for each
participant. Empirical Bayes estimates are optimally
weighted averages that combine individual average
slopes by combining estimates from both the individual
and the group and “shrink” individual specific estimates
toward the overall mean (Diez-Roux, 2002). The extracted
estimate represents individual differences in how par-
ticipants change their subsequent behavior (both
magnitude and direction) based on the type of feedback
they received on the prior trial. Larger positive values
(e.g., >0) are indicative of greater learning (i.e., partici-
pants increase pumps following a cashed balloon but de-
crease pumps following an exploded balloon), whereas
values closer to zero indicate little or no learning (i.e.,
participants increased or decreased their pump behavior
at random with respect to previous feedback). Although
negative values (e.g., <0) are possible, this would indi-
cate that participants were increasing pumps after explo-
sions and decreasing pumps after cash-outs, an especially
irrational strategy.

Additional behavioral measures included number of
explosions or the number of times participants pumped
balloons until they popped as well as total points earned
on the task, which represents participants’ successful ac-
quisition of resources. Higher total point values are indic-
ative of more optimal behavior on the task.

fMRI Data Acquisition

Imaging data were collected using a 3-T Siemens Trio
MRI scanner (Siemens, Berlin, Germany). The BART
included T2*-weighted EPI (slice thickness = 3 mm,
38 slices, repetition time [TR] = 2 sec, echo time [TE]
= 25 msec, matrix = 92 X 92, field of view [FOV] =
230 mm, voxel size = 2.5 X 2.5 X 3 mm®). In addition,
structural scans consisted of a T2*-weighted, matched-
bandwidth (MBW), high-resolution, anatomical scan (TR =
4 sec, TE = 64 msec, FOV = 230, matrix = 192 X 192, slice
thickness = 3 mm, 38 slices) and a T1* magnetization-
prepared rapid acquisition gradient-echo (MPRAGE; TR =
1.9 sec, TE = 2.3 msec, FOV = 230, matrix = 256 X 256,
sagittal plane, slice thickness = 1 mm, 192 slices). To max-
imize brain coverage, MBW and EPI scans were obtained
using an oblique axial orientation.

fMRI Data Preprocessing and Analysis

Preprocessing and data analysis utilized Statistical Paramet-
ric Mapping (SPM8; Wellcome Department of Cognitive
Neurology, Institute of Neurology, London, UK) software
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package. Preprocessing steps involved spatial realign-
ment to correct for head motion (included participants
had no motion in excess of 1.5 mm between-slice mo-
tion); coregistration of all images to the high-resolution
T1* MPRAGE structural scan; and segmentation into gray
matter, white matter, and cerebrospinal fluid. Transfor-
mation matrices used in MPRAGE segmentation were ap-
plied to MBW and EPI images to warp them into the
standard stereotactic space defined by the Montreal Neu-
rological Institute (MNI) and the International Consor-
tium for Brain Mapping. EPI images (voxel size = 3
mm?®) were smoothed using an 8-mm Gaussian kernel,
FWHM to increase signal-to-noise ratios in the functional
images. The general linear model in SPM8 was then used
to convolve each trial with a canonical hemodynamic re-
sponse function. Low-frequency drift across the time se-
ries was removed using a high-pass temporal filter with a
128-sec cutoff, and a restricted maximum likelihood algo-
rithm with an autoregressive model order of 1 was used
to estimate serial autocorrelations.

The BART was modeled using an event-related design
with trial duration corresponding to participant RT on a
given pump or cash-out or using the average RT across
the task on explosions. Fixed-effects models included a
general linear model for each condition of interest, which
included pump decisions, cash-out decisions, and explo-
sion events. We modeled pump decisions separately for
trials that ended in cash-outs and trials that ended in ex-
plosions. Because the number of pumps is artificially con-
strained on balloons that end in explosions, analyses
were only performed with pump decisions on balloons
that ended in cash-outs, as done in prior research (Telzer
et al,, 2015; Lejuez et al., 2002). The jittered intertrial pe-
riods were not modeled and served as the implicit base-
line for the task. A parametric modulator (PM) was
included for each of the three conditions of interest
and represents the pump number for a balloon at each
pump or cash-out decision. All the PM values were
mean-centered by balloon within participants, such that
for each balloon, all PM values summed to 0. The PM
served to control for differences across pumps within a
balloon trial. Contrasts were then computed at the indi-
vidual level for each condition of interest.

In addition, we examined neural connectivity by con-
ducting psychophysiological interaction (PPI) analyses.
We used structurally defined ROIs (Wake Forest Univer-
sity PickAtlas; Maldjian, Laurienti, Kraft, & Burdette,
2003) as the seed regions, including the medial OFC
and bilateral VS. These regions have been strongly impli-
cated in reward-related associative learning, being in-
volved in the formation and manipulation of stimulus—
reward expectations (Schoenbaum & Roesch, 2005;
Kelley, 2004; Gottfried, O’Doherty, & Dolan, 2003) and
as such may be involved in developmental processes that
support exploration and learning. PPI analyses utilized a
generalized form of context-dependent PPI form the au-
tomated generalized PPI toolbox in SPM (McLaren, Ries,
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Xu, & Johnson, 2012). Deconvolved time series were ex-
tracted from the medial OFC and VS ROI for each partic-
ipant to create the physiological variables. Each trial type
was then convolved with the canonical HRF to create the
psychological regressor. Finally, the physiological variable
was multiplied with the time series from the psychologi-
cal regressors to create the PPI term. This interaction
term was then used to identify regions that covary with
the seed region in a task-dependent manner. Each partic-
ipant has a regressor computed that represents the de-
convolved BOLD signal, which was included alongside
each psychological and PPI term for each event type to
create a generalized PPI model.

Random effects, group level analyses were run on all
individual subject contrasts using GLMFlex, which cor-
rects for variance—covariance inequality, removes outliers
and sudden activation changes in the brain, partitions er-
ror terms, and analyzes all voxels containing data
(mrtools.mgh.harvard.edu/index.php/GLM_Flex). Be-
cause not all participants had sufficient explosion events
to model successfully, group level analyses focused on
pump and cash-out decisions. Group-level analyses in-
volved whole-brain regressions using age as a continuous
covariate. Correction for multiple comparisons was run
using a Monte Carlo simulation through the updated ver-
sion (April 2016) 3dFWHMx and 3dClustSim programs
from the AFNI software package (Ward, 2000) using
the group level brain mask. The simulation resulted in
a voxel-wise threshold of p < .001 and a minimum cluster
size of 46 voxels for the whole brain, corresponding to p <
.05, family-wise error corrected.

Finally, mediation analyses tested how age was associ-
ated with behavioral indices of task performance via brain
activation during the task. Mediation was performed
using the PROCESS macro methods outlined by Hayes
(2013). All variables of interest were standardized before
entering them into mediation models and using 1000
sample bootstrapping, the magnitude and significance
of the indirect effect as well as a bias-corrected confi-
dence interval (CI) were calculated. For all mediation
models, age was entered as the predictor variable, the
brain as the mediator, and behavioral indices as the out-
come. Mediators were added into separate models such
that each model only contained one behavioral measure
or brain region as the mediator.

RESULTS
Behavioral Results
Age-related Increases in Risk and Learning

We ran bivariate correlations between age of participants
and behavioral indices of interest (see Table 1 for means,
SDs, ranges, and correlations between all study variables).
Age was associated with more risk behavior (i.e., higher
average pumps; » = .36, p = .001) and learning (i.e.,
pumping more after a cash-out and less after an explosion;

Volume 29, Number 3



Table 1. Descriptives and Correlations for Study Variables of Interest

Correlations
Variable M SD Range 1 2 3 4 5
1. Age 1410 276 8.10-17.7 1 3G S 21% 3G
2. Risk behavior 4.50 0.77 2.78-6.21 1 82 wHAE B3 B3k
3. Learning 0.87 0.32 0.24-1.32 1 50k T4
4. Total points 81.83 8.32 63-106 1 A2
5. Number of explosions 5.48 2.41 1-12 1

Numbers along the diagonal represent Pearson’s correlations.

¥ < .1, #¥p < .05, #FFp < 01, #FFEH < .005.

r = .51, p < .001). Moreover, increased learning was asso-
ciated with higher points earned (r = .50, p < .001), sug-
gesting the utility of learning and its downstream influence
on how participants acquire adaptive outcomes.

Learning Explains Age Differences in
Risk-taking Bebavior

Next, we examined whether older participants’ increased
learning explained the link between age and risk taking
during the BART. In other words, does the propensity
of older youth to learn more from the task environment
explain why they tend to take more risks across the task?
As shown in Figure 2, we found a significant indirect ef-
fect such that the degree of learning exhibited by partic-
ipants mediates the relationship between age and risk
behavior during the task, suggesting that older adoles-
cents’ greater risk-taking behaviors is explained, in part,
because they are learning from the parameters of the task
to a greater extent.

We also examined whether this increased learning and
the increased propensity to take risks benefits partici-
pants (i.e., they would earn more points) or whether
the associated costs of increased explosions would offset
their higher rates of pumping (i.e., they would earn fewer

Indirect Effect: .44 (.11); CI = [.23, .66]

Learning

Indirect Effect: .56 (.18); CI=[.17, .88]

Figure 2. Learning mediates the link between age and risk behavior,
which is associated with more total points. Direct effects are indicated
by the coefficients (grayed-out) above the dashed lines. For the path
from Learning to Risk Behavior, coefficients to the left are for the first
model and coefficients to the right are for the second. For indirect
effects, coefficients are standardized with the SD in parentheses, and all
other coefficients are standardized. *p < .05, **p < .01, **p < .001.

points). We found that participants’ risk behavior medi-
ates the relationship between learning and the total num-
ber of points that participants earned (Figure 2). In other
words, participants who show heightened levels of learn-
ing are more likely to earn more points because they en-
gage in greater amounts of risk behaviors. Together,
results demonstrate that older participants’ show in-
creases in learning and risk taking across the task and
that these behavioral patterns serve an adaptive function
with respect to resource acquisition.

fMRI Results

Age-related Differences in Risk- and Reward-related
Neural Activity

We examined the effects of age on our conditions of in-
terest by entering Age as a continuous regressor in
whole-brain regression analyses (for main effects without
Age, see Table 2). Areas showing age-related increases in
risk-related activity (i.e., during pumps) included regions
of the mid-cingulate cortex (MCC) and bilateral calcarine
gyrus, with an additional cluster in the right superior
frontal gyrus (SFG) nearing threshold (k¢ = 42). For re-
ward-related activity (i.e., during cash-outs), we found
age-related increases in the VS and medial OFC. No re-
gions showed significant age-related decreases during
risk or reward (Table 3; Figure 3).

Links between Age-related Neural Activation
and Learning

Next, we examined whether regions showing age-related
increases in activation were associated with learning. To
do so, we extracted parameter estimates of signal inten-
sity from the regions that showed significant age effects
and performed mediation analyses to examine whether
activity in these regions explained the link between age
and learning. Correlation analyses indicated that all re-
gions showing age-related increases in activation were re-
lated to learning (Table 4). However, mediation analyses
indicate that reward-related activity in the medial OFC
was the only region to significantly explain the link
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Figure 3. (A) During reward (e.g., cash-outs), we found age-related increases in VS and medial OFC activation. (B) During risk (e.g., pumps), we

found age-related increases in MCC and R SFG activation.

between age and learning (indirect effect: B = .11, SE =
.05, 95% CI [.03, .23]). These findings suggest that devel-
opmental differences in these regions support increased
learning within the task environment observed in older
adolescents.

Functional Connectivity

Age-related Changes in Connectivity during
Risk and Reward

Next, we ran PPI analyses using our medial OFC and VS
seed regions (for main effects without Age, see Table 2).
We entered Age as a regressor in whole-brain PPI analy-
ses. We found that the medial OFC shows age-related in-
creases in functional connectivity with the medial PFC
(mPFC) during risk and with the mPFC and posterior cin-
gulate cortex (PCC) during reward (Table 3; Figure 4).
There were no regions that showed age-related decreases
in connectivity with the medial OFC during either condi-
tion. We found no regions that showed age-related
change in VS connectivity.

Links between Age-related Neural Connectivity
and Learning

Finally, we examined whether age-related differences in
OFC-mPFC connectivity explain age-related differences
in learning. Correlation analyses indicate that all regions
showing age-related increases in OFC connectivity during
both risk and reward were related to increased learning
(Table 4); however, only age-related increases in OFC—
mPFC functional connectivity during reward significantly

418  Journal of Cognitive Neuroscience

explain the link between age and learning (indirect effect:
B = .12, SE = .05, 95% CI [.04, .25)).

DISCUSSION

A major focus of research on neural development during
adolescence has been the neural mechanisms that sup-
port changes in risk taking and sensation seeking (Casey,
2015). However, much of the theoretical and empirical
work on adolescent neural development has highlighted
aspects of adolescent neural circuitry, which are deficient
or ineffective, while ignoring potentially adaptive roles
for developing neural circuits (see Telzer, 2016; Casey,
2015). In contrast, we focused on aspects of adolescent
neurodevelopment that might support learning and, in
turn, adaptive outcomes. Our findings highlight adoles-
cence as a period of behavioral and neural flexibility,
which leads to increases learning within risky contexts.
Additionally, this flexibility can drive behaviors that ex-
tract adaptive outcomes from these contexts, suggesting
that a more-nuanced view of adolescence is warranted.
Instead of characterizing still-developing neural systems
as deficient, developmentally appropriate neural circuitry
can play an adaptive role in adolescent behavior.
Consistent with prior research, we found that partici-
pants showed age-related increases in risk taking. Sup-
porting the theory that increased exploration of the
environment, even at potential risk, supports adaptive
behavior, we found that age-related increases in learning
(i.e., participants’ successfully exploring the task pa-
rameters and changing their behavior in response to
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Table 2. Neural Regions Showing Significant Activation during
Risk and Reward in the Main Effects and PPI Analyses

Anatomical Region  +/— BA X y z t k

Main Effect

Risk
L insula + —-30 20 7 8.82 479
R insula + 33 23 7 594 219
ACC +  24/32 3 26 31 8.00 710
L MFG + 9 —33 53 25 5.06 120
R MFG +  9/46 36 44 34 4.80 53
L postcentral gyrus ~ + -63 =22 25 615 258
L IFG (pars - 45 =36 11 28 —=5.67 171
triangularis)
R IFG (pars - 45 48 29 22 —438 155
triangularis)
PCC - 23/31 6 —46 34 —5.13 438
Reward
L insula® + —-30 17 1 1130 32470
R insula® + 33 23 -2 1107
ACC* +  24/32 329 31 1083
R VS§* + 21 11 -2 8.42
LVS* + —18 14 -5 7.92
R MFG* + 9 33 =70 31 7.42
L MFG* + 9/46 —-45 41 22 675
R lateral OFC* + 11 21 41 =20 6.76
L lateral OFC + 1 =27 50 —-14 6.01 93
Medial OFC - 11 -6 56 —8 —4.56 65
PPI (Medial OFC Seed)
Risk
Ventromedial PFC +  10/11 0 50 —17 17.20 44147
PCC + 2331 0 —49 37 12.61
R amygdala + 21 =7 =17 757
L amygdala + —-21 =10 —-17 851
L SFG + 89 —18 35 43 9506
R SFG + 8 24 32 46 8.30
LVS + -9 14 -8 8.06
Reward
Ventromedial PFC"  + 10/11  —3 50 —17 1430 49598
vsP + 0 8 -8 590
Superior mPFC” +  9/10 -9 44 46 938
pCc” + 2331 -3 —49 25 1292
R IFGP + 45 51 32 -8 886
L IFG" + 45 -51 29 -2 833

Table 2. (continued)

Anatomical Region — +/— BA x y z t k
PPI (VS Seed)
Risk

R caudate® + 0 —10 10 1438 56455

L caudate® + -12 =7 13 12.02

L amygdala® + -18 -1 —-14 1148

R amygdala“ + 18 5 —14 1034

dACC® + 24532 -3 32 28 11.52

PCC® +  23/31 3 =27 25 1177
Reward

R caudate + 6 —10 10 1178 49598

L putamen® + -18 11 7 1141

R putamen’ + 21 15 -5 1135

L amygdala® + -18 -1 —14 934

pcc! + 2331 0 —40 22 1013

dacc! + 2432 3 32 31 9.2

L and R refer to left and right hemispheres; + and — refer to positive or negative
activation; BA refers to Brodmann’s area of peak voxel; & refers to the number of
voxels in each significant cluster; ¢ refers to peak activation level in each cluster; x,
y, and z refer to MNI coordinates; voxel size = 3 mm®. Superscripts (e.g., a, b,
etc.) indicate that peak voxels are part of a contiguous cluster. dACC = dorsal
ACC, MFG = middle frontal gyrus, IFG = inferior frontal gyrus.

feedback) explained age-related increases in the tendency
to take more risks during adolescence, and greater risk
taking was linked to greater acquisition of points. Although
previous work has suggested the potential utility of risk
taking during adolescence (Spear, 2000), the current liter-
ature generally discusses and tests how increased risk
taking during adolescence is impulsive and irrational
behavior driven by increases in sensitivity to motivational
stimuli (see Casey, 2015; Steinberg et al., 2008). Results in
this study suggest that risk taking may emerge, in part, from
an increased ability to flexibly learn from the environment
during adolescence. Such learning from environmental
feedback likely plays an adaptive role in adolescent skill
acquisition, establishment of new social networks, and
identity formation.

Context is an important determinate of whether a pro-
pensity to take risks is adaptive or maladaptive (Humphreys
et al., 2013). In an uncertain environment, increased risk
taking may expose adolescents to opportunities for learn-
ing, which in turn may help the individual to increase the
likelihood of attaining adaptive outcomes. When we consid-
er the evolutionary history of adolescence, it is likely that
there are trade-offs on a population level for a developmen-
tal period marked by increased risk, where the risk of
exposure to detrimental outcomes is weighted against the
opportunities for food and mate resources that exploration
promotes (Spear, 2000). This study suggests that, as chil-
dren transition into adolescence, they are more willing to
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Table 3. Neural Regions Showing Age-related Increases during
Risk and Reward in Activation and PPI Analyses

Table 4. Associations between Neural Regions Showing Age-
related Increases in Activation and Behavioral Learning

Anatomical Region +/— BA x z t k Neural Regions Age Risk Bebavior  Learning
Activation Activation
Risk Risk
R SFG' + 9 15 47 25 363 42 MCC 4O 20% 35k
MCC + 31 0 —10 43 379 67 R SFG* (k = 42) oDk 28%* B
R motor cortex + 4 24 =25 61 412 82 Reward
Calcarine gyrus + 17 0 —99 7 445 50 Medial OFC 4G ] Ak
Reward VS 4G .18 28
R VS + 3 8 —2 464 50
R medial OFC* + 11 9 53 —20 446 76 PPI (Medial OFC Seed)
L medial OFC® + 11 -9 41 —17 4.00 Risk
R cerebelum + 24 =70 —38 3.89 55 mPFC 45k 25%% 30k
Reward
PPI (Medial OFC Seed) mPFC YAk ok Kkl NobRioia
Risk PCC A2k 27 28%*®

Superior mPFC + 910 -3 56 10 431 299
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L and R refer to left and right hemispheres; + and — refer to positive or
negative association; BA refers to Brodmann’s area of peak voxel; % re-
fers to the number of voxels in each significant cluster; # refers to peak
activation level in each cluster; x, y, and z refer to MNI coordinates;
voxel size = 3 mm?>. Superscripts (e.g., a, b, etc.) indicate that peak
voxels are part of a contiguous cluster. rACC = rostral ACC.

Cluster is subthreshold.

engage in these trade-offs between risk taking and learning
than are younger children, behavior that may result in adap-
tive outcomes.

At the neural level, we found that age-related increases
in both motivational and regulatory neural systems sup-
ported flexible learning. Motivational regions included
the VS and OFC. The VS, a region with a high density
of dopaminergic neurons, has been classically implicated
in reward anticipation and reactivity and shows height-
ened activation during adolescence (Galvan et al., 2005,
2006; see Telzer, 2016). The OFC’s role in reward
processing involves assigning and updating the relative re-
ward value of actions and stimuli (Gottfried et al., 2003;
O’Doherty, Kringelbach, Rolls, Hornak, & Andrews,
2001). This study’s findings of age-related increases in
these two regions during reward acquisition fit well with
previous research. Furthermore, we found that OFC re-
ward-related activity explained links between age and in-
creases in learning, which supports previous research
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implicating the OFC in reward-related learning (Schoen-
baum & Roesch, 2005). Reward-related activity in the
OFC may help adolescents track the motivational salience
of points in the task as well as integrate reward (i.e., cash-
outs) and punishment (i.e., explosion) feedback from the
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Figure 4. We found age-related increases in (A) both mPFC and PCC
functional connectivity with OFC during reward and (B) mPFC
functional connectivity with OFC during risk.
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task into their cost-benefit representations for future risk
taking.

We also found age-related increases in regulatory re-
gions during risk decisions, including the MCC, which
has been implicated in action selection (Shackman
et al., 2011; Vogt, 2005). Developmental increases in
reward-related activation in the OFC may reflect greater
valuation of reward which drives changes in future behav-
ior, whereas increases in regulatory and action selection
regions may support increases in goal-directed behavior
enactment. Changes in these neural systems support
both learning and risk taking by increasing attention to
certain stimuli, weighting information gained in reward-
ing contexts more so than children. This weighted infor-
mation is in turn used to a greater degree to direct
behavior during this period of development. However,
an overweighting of reward-related information likely
also is responsible for adolescents sometimes pursuing
rewarding contexts without complete regard for the
potential negative consequences. These results highlight
the importance of two types of neural systems in sup-
porting flexible learning and reflect a growing under-
standing that complex behaviors are not supported by
the development of single brain regions, but rather a
system of regions that play particular computational roles
in the service of behavior.

Finally, to examine connectivity of circuits that may be
important for learning, we examined how age-related
changes in functional connectivity between motivational
and regulatory regions support flexible behavior. We
found age-related increases in functional connectivity be-
tween the medial OFC and the mPFC during both risk
and reward conditions. Medial regions of the OFC show
both structural (Ongiir & Price, 2000) and positive func-
tional (Kahnt et al., 2012) connectivity to regions of the
mPFC, which has been implicated in associative learning
and response adaptation (Euston, Gruber, & McNaughton,
2012) and are sensitive to risk conditions (Van Leijenhorst
et al., 2010). Both regions have been implicated in risk-
taking behavior (Van Duijvenvoorde et al., 2014; Chein,
Albert, O’Brien, Uckert, & Steinberg, 2011) and show pos-
itive functional connectivity during risky decision-making
in adults (Cohen, Heller, & Ranganath, 2005). Although
the development of these circuits across adolescence
has not been reported, resting state functional connectiv-
ity between OFC and mPFC regions has been shown to
differ between individuals with drug addiction and con-
trols (Janes, Nickerson, & Kaufman, 2012). These findings
suggest that the development of OFC-mPFC circuitry
plays an important role in risk-taking behavior.

Age-related increases in OFC-mPFC connectivity pro-
vide a mechanism for age-related increases in learning,
suggesting that increased OFC—mPFC functional connec-
tivity reflects a more integrated motivational regulatory
system, with greater intercommunication between re-
gions involved in reward processing and regions involved
in action updating and selection. This supports previous

findings that still-developing top—down regulation of the
mPFC is associated with adaptive outcomes (Gee et al.,
2013) and that, similar to other forms of physiological de-
velopment (e.g., pubertal and reproductive timing), ac-
celeration of neural development likely will involve
trade-offs, which curtail extended learning and plasticity
(Ellis et al., 2009). This study further suggests that the de-
velopment of learning depends not only on localized ac-
tivational increases but also on how neural regions
interact, which underscores the importance of circuit-
based understandings of neurodevelopmental processes
(Casey, 2015). Mapping the functional significance of sys-
tem level neurodevelopmental changes for adolescent
behavior is an important future step for the examination
of the neurobiological mechanisms driving the increases
in risk taking and learning that characterize adolescence.
When studying complex processes, such as risky
decision-making, both localized and circuit-based changes
should be considered as possible supporting mecha-
nisms for behavior changes seen across development
(Casey, Galvidn, & Somerville, 2016). Although research
localizing function to particular brain regions has greatly
contributed to our understanding of neural function, the
brain operates as an integrated circuit, and studying
developmental changes in individual regions may have a
finite utility.

Although the results reported in the current study sug-
gest an exciting new perspective on adolescent risk- and
reward-related neural development, several compelling
questions remain to be explored. We examined develop-
mental trends in risk- and reward-relatedneural processes
and functional connectivity in a large sample of 8- to
17-year-olds. Because of the constraints of participant be-
havior, we were unable to examine developmental trends
in neural sensitivity to explosion events, and future re-
search should aim to close this gap in our understanding
of developmental trends in neural sensitivity to loss. An-
other constraint for interpreting the reported results
arises from the complexity of the BART and the variety
of strategies participants could conceivably employ
during the task (for a review of some possibilities, see
Wallsten, Pleskac, & Lejuez, 2005). As such, it is difficult
to describe any one behavioral pattern as optimal in its
own right, and therefore, we relied on strong associations
with the total points participants earned to characterize
higher learning as more optimal behavior. Additionally,
previous research has suggested that developmentally
significant changes in these neural systems likely continue
further through the end of adolescence and into young
adulthood (Braams, van Duijvenvoorde, Peper, & Crone,
2015; Van Leijenhorst et al., 2010). Future research should
seek to extend the results reported in the current study
by including participants through the transition from
adolescence to young adulthood. Such a study could
inform whether the developmental effects we report
here continue to increase linearly into young adulthood
or whether learning and exploration plateau or even
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diminish. Finally, the cross-sectional nature of the current
study limits our ability to draw any conclusions about
individual differences in the neural and behavioral devel-
opmental trajectories we examined. Future research
should examine how the processes of exploration, risk
taking, and learning change within individuals over time.
Longitudinal examination of these behavioral and neuro-
developmental processes can help to confirm and extend
our understanding of how individual differences in these
trajectories contribute to differences in adaptive and
maladaptive outcomes across adolescence.

In summary, our findings support a new perspective of
the behavioral and neurobiological changes that charac-
terize adolescence. Development of motivational and
regulatory neural circuitry supports adolescents’ learning,
which contributes to increases in risk taking. However, in
contrast with much of the literature on adolescent devel-
opment concerning risk behavior, we found that risky de-
cisions emerge in part through adolescents’ increased
propensity for flexible learning, which suggests an adap-
tive role for still-developing neural circuitry. These results
complement findings in nonhuman models, which sug-
gest that adolescent animals (Vigilant et al., 2015; Johnson
& Wilbrecht, 2011) show unique behavioral patterns that
support flexibility in service of adaptive goals. This adap-
tive role for developing neural circuitry also supports pre-
vious suggestions that accelerated development may
actually be detrimental and linked to negative outcomes
(Ellis et al., 2009). Instead of a one-to-one correspon-
dence between maturity and function, normative devel-
opment may rely on neural and behavioral states that
happen in a particular, developmentally appropriate fash-
ion. Our findings underscore the importance of paying
greater attention to the potentially adaptive roles that
still-developing neural circuitry can have for adolescent
behavior and the contexts in which these propensities
for seeking learning opportunities may be appropriately
channeled.
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